Optical: systems and elements – Optical modulator – Light wave temporal modulation
Patent
1993-09-29
1995-09-12
Hellner, Mark
Optical: systems and elements
Optical modulator
Light wave temporal modulation
359243, 359244, G02B 626
Patent
active
054502292
ABSTRACT:
A method and apparatus for wavelength shifting an intensity-modulated optical signal are provided. The present invention utilizes an intensity-modulated first optical signal at a first wavelength, a second optical signal at a second wavelength and an optical amplifier with a gain which varies with the intensity modulation of the first optical signal. The optical amplifier receives and amplifies the first and second signals such that variations in the intensity modulation of the first optical signal alter the optical amplifier gain, producing an amplified second optical signal with corresponding intensity variations. In accordance with the invention the power level of the second optical signal is adjusted to reduce the amplifier gain recovery time and thereby reduce the rise time of the intensity variations of the amplified second optical signal. Optical wavelength shifting by amplifier gain compression is thereby made possible at bit rates of 10 Gbits/sec or higher.
REFERENCES:
patent: 5015054 (1991-05-01), Chaffee
patent: 5111326 (1992-05-01), Ball
patent: 5301054 (1994-04-01), Huber et al.
Agrawal, G. P., and Dutta, N. K., Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold Company, Inc., New York, 1986, p. 116-122, 220-228.
Durhuus, T., Pedersen, R. J. S., Mikkelsen, B., Stubkjaer, K. E., Oberg, M., and Nilsson, S., "Optical Wavelength Conversion Over 18 nm At 2.5 Gb/s By DBR-Laser," IEEE Photonics Technology Letters, vol. 5, No. 1, Jan. 1993, pp. 86-88.
Glance, B., Wiesenfeld, J. M., Koren U., Gnauck, A. H., Presby, H. M., and Jourdan, A., "High Performance Optical Wavelength Shifter," Electronics Letters, vol. 28, No. 18, Aug. 27, 1992, pp. 1714-1715.
Joergensen, C., Durhuus, T., Braagaard, C., Mikelsen, B., and Stubkjaer, K. E., "4 Gb/s Optical Wavelength Conversion Using Semiconductor Optical Amplifiers," IEEE PHotonics Technology Letters, vol. 5, No. 6, Jun. 1993, pp. 657-660.
Ludwig, R., and Raybon, G., "BER-Measurements of Frequency Converted Signals Using Four-Wave-Mixing in a Semiconductor Laser Amplifier at 1, 2.5, 5 and 10 Gbit/s," Paper submitted to Electronics Letters, 1993.
Mikkelsen, B., Vaa, M., Pedersen, R. J., Durhuus, T, Joergensen, C, Braagaard, C., Storkfelt, N., Stubkjaer, K. E., Doussiere, P., Garabedian, G., Graver, C., Derouin, E., Fillion, T., and Klenk, M., "20 Gbit/s Polarisation Insensitive Wavelength Conversion in Semiconductor Optical Amplifiers," Post-deadline Paper No. TLP 12.6, ECOC 1993, Montreux, Switzerland, Sep. 1993, pp. 73-76.
Saitoh, Tadashi, and Mukai, Takaai, "Recent Progress in Semiconductor Laser Amplifiers," Journal of Lightwave Technology, vol. 6, No. 11, Nov. 1988, pp. 1656-1664.
Valiente, I, Simon, J. C., and Le Ligne, M., "Theoretical Analysis of Semiconductor Optical Amplifier Wavelength Shifter," Electronics Letters, vol. 29, No. 5, Mar. 4, 1993, pp. 502-503.
Wiesenfeld, J. M., and Glance, B., "Cascadability and Fanout of Semiconductor Optical Amplifier Wavelength Shifter," IEEE Photonics Technology Letters, vol. 4, No. 10, Oct. 1992, pp. 1168-1171.
AT&T Corp.
Hellner Mark
LandOfFree
Optical wavelength shifter with reduced gain recovery time does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical wavelength shifter with reduced gain recovery time, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical wavelength shifter with reduced gain recovery time will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-409599