Optical wavelength shifter with reduced gain recovery time

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

359243, 359244, G02B 626

Patent

active

054502292

ABSTRACT:
A method and apparatus for wavelength shifting an intensity-modulated optical signal are provided. The present invention utilizes an intensity-modulated first optical signal at a first wavelength, a second optical signal at a second wavelength and an optical amplifier with a gain which varies with the intensity modulation of the first optical signal. The optical amplifier receives and amplifies the first and second signals such that variations in the intensity modulation of the first optical signal alter the optical amplifier gain, producing an amplified second optical signal with corresponding intensity variations. In accordance with the invention the power level of the second optical signal is adjusted to reduce the amplifier gain recovery time and thereby reduce the rise time of the intensity variations of the amplified second optical signal. Optical wavelength shifting by amplifier gain compression is thereby made possible at bit rates of 10 Gbits/sec or higher.

REFERENCES:
patent: 5015054 (1991-05-01), Chaffee
patent: 5111326 (1992-05-01), Ball
patent: 5301054 (1994-04-01), Huber et al.
Agrawal, G. P., and Dutta, N. K., Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold Company, Inc., New York, 1986, p. 116-122, 220-228.
Durhuus, T., Pedersen, R. J. S., Mikkelsen, B., Stubkjaer, K. E., Oberg, M., and Nilsson, S., "Optical Wavelength Conversion Over 18 nm At 2.5 Gb/s By DBR-Laser," IEEE Photonics Technology Letters, vol. 5, No. 1, Jan. 1993, pp. 86-88.
Glance, B., Wiesenfeld, J. M., Koren U., Gnauck, A. H., Presby, H. M., and Jourdan, A., "High Performance Optical Wavelength Shifter," Electronics Letters, vol. 28, No. 18, Aug. 27, 1992, pp. 1714-1715.
Joergensen, C., Durhuus, T., Braagaard, C., Mikelsen, B., and Stubkjaer, K. E., "4 Gb/s Optical Wavelength Conversion Using Semiconductor Optical Amplifiers," IEEE PHotonics Technology Letters, vol. 5, No. 6, Jun. 1993, pp. 657-660.
Ludwig, R., and Raybon, G., "BER-Measurements of Frequency Converted Signals Using Four-Wave-Mixing in a Semiconductor Laser Amplifier at 1, 2.5, 5 and 10 Gbit/s," Paper submitted to Electronics Letters, 1993.
Mikkelsen, B., Vaa, M., Pedersen, R. J., Durhuus, T, Joergensen, C, Braagaard, C., Storkfelt, N., Stubkjaer, K. E., Doussiere, P., Garabedian, G., Graver, C., Derouin, E., Fillion, T., and Klenk, M., "20 Gbit/s Polarisation Insensitive Wavelength Conversion in Semiconductor Optical Amplifiers," Post-deadline Paper No. TLP 12.6, ECOC 1993, Montreux, Switzerland, Sep. 1993, pp. 73-76.
Saitoh, Tadashi, and Mukai, Takaai, "Recent Progress in Semiconductor Laser Amplifiers," Journal of Lightwave Technology, vol. 6, No. 11, Nov. 1988, pp. 1656-1664.
Valiente, I, Simon, J. C., and Le Ligne, M., "Theoretical Analysis of Semiconductor Optical Amplifier Wavelength Shifter," Electronics Letters, vol. 29, No. 5, Mar. 4, 1993, pp. 502-503.
Wiesenfeld, J. M., and Glance, B., "Cascadability and Fanout of Semiconductor Optical Amplifier Wavelength Shifter," IEEE Photonics Technology Letters, vol. 4, No. 10, Oct. 1992, pp. 1168-1171.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical wavelength shifter with reduced gain recovery time does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical wavelength shifter with reduced gain recovery time, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical wavelength shifter with reduced gain recovery time will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-409599

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.