Optical waveguide gratings having roughened cladding for...

Optical waveguides – With optical coupler – Input/output coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S024000, C385S123000, C385S028000, C385S029000, C359S199200

Reexamination Certificate

active

06408118

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to optical waveguide devices and, in particular, to optical waveguide Bragg gratings.
BACKGROUND OF THE INVENTION
Optical waveguide Bragg gratings are critical components in WDM communication systems. They perform several key applications including add/drop filtering, band filtering, and dispersion compensation. In these applications the grating is typically used as a reflective filter. Incident light within the stopband of the grating is strongly reflected whereas light outside the stopband is transmitted. An ideal Bragg grating would possess a rectangular amplitude filter function. The reflection would be unity within the stopband and negligible outside the stopband.
In practice, an important limitation on a realistic optical waveguide Bragg grating is cladding mode loss on the short wavelength side of the main reflection band. This short wavelength cladding mode loss is caused by grating-induced coupling from the core mode into backward propagating cladding modes. The cladding mode loss is seen in the transmission spectrum as sharp resonances on the short wavelength side of the Bragg resonance. The magnitude of the loss scales approximately with the square of the strength of the grating, and the loss is dramatically exacerbated when many gratings are cascaded. It thus imposes strict limitations on the design of optical networks that use grating-based technologies.
Proposed approaches to reduce cladding mode losses in optical waveguide Bragg gratings fall into two basic categories. The first is reduction of core-cladding coupling through special design of the core region. Such reduction can be achieved by the depressed cladding design, the high delta design and the photosensitive cladding design. The second basic category involves applying polymer surface coatings to smooth the sharp resonant structure of the cladding mode spectrum and achieve, instead, an approximately uniform background loss.
The depressed cladding design was proposed by Dong et al. in “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings”,
IEEE Photonic Technology Letters
, Vol. 9, pp. 64-66 (1997). A conventional waveguide core is surrounded by a lighter doped cladding region i.e. a cladding with a lower index of refraction. The depressed cladding region suppresses the overlap of lower order cladding modes with the core. The transverse oscillations are stretched in the depressed cladding region, since the transverse resonance condition is associated with the optical path length (distance times refractive index). This approach has achieved moderate success. But the reduction is limited by the amount that the index can be reduced in the depressed cladding region.
The high delta design involves increasing the offset of the cladding mode from the Bragg resonance. This is achieved by increasing the effective core refractive index so that it is substantially above that of the lowest order cladding mode. The result is that the cladding mode resonances are offset from the Bragg resonance. Various groups have demonstrated that a waveguide with &Dgr;~2%, and a core diameter of d~2 &mgr;m, results in an offset of ~2-5 nm. Although the high delta principle has been demonstrated, the usable bandwidth is still limited by the onset of cladding mode loss. In addition there is a significant penalty incurred due to mode mismatch between the grating waveguide and the transmission waveguide.
The photosensitive cladding design incorporates photosensitive material into the cladding. See E. Delevaque et al. “Optical fiber design for strong gratings photoimprinting with radiation mode suppression,” OFC '95, PD5, (1995) and K. Oh et al., “Suppression of cladding mode coupling in Bragg grating using GeO
2
B
2
O
3
doped photosensitive cladding optical fiber,”
Electronic Letters
, Vol. 35, pp. 423-424 (1999). After UV exposure, the grating region extends into the cladding. If the core and cladding have the same sensitivity and there is no blaze, and the exposure is uniform through the waveguide, then the grating will have negligible coupling to cladding modes. Thus cladding mode loss will be negligible. A disadvantage of this scheme is a net reduction in the grating strength due to absorption in the photosensitive cladding region. There is also increased coupling to asymmetric modes because of the increased asymmetry in the region where these modes have a large mode field strength.
Turning to the second basic approach, the waveguide is typically surrounded with a lossy polymer material that has a refractive index near that of the cladding glass. In this case the cladding mode extends into the polymer where it is absorbed, and thus core-cladding mode coupling is reduced. The cladding mode loss is reduced closer to the radiation limit, typically by a factor of 4-5. This loss is acceptable for many applications but can still limit the number of devices that can be cascaded. Accordingly, there is a need for improved optical waveguide gratings having reduced cladding mode loss.
SUMMARY OF THE INVENTION
In accordance with the invention, an optical waveguide comprising a longitudinally extending core housing an optical grating and a cladding layer peripherally surrounding the core, is provided with an outer surface of the cladding layer having perturbations. Each perturbation has a height with respect to the core that varies by at least 0.1 times a Bragg wavelength of the grating over the surface of the perturbation and covers an extent of the outer surface whose linear dimensions are less than 1 cm. The perturbations suppress cladding mode spectra and reduce short wavelength cladding mode loss.


REFERENCES:
patent: 3891302 (1975-06-01), Dabby
patent: 4665660 (1987-05-01), Jablonski
patent: 4676594 (1987-06-01), Presby
patent: 5411566 (1995-05-01), Poole
patent: 6301418 (2001-10-01), Freier
L. Dong, et al., “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber gratings”, IEEE Photonics Technology Letters, 9(1), pp. 64-66, 1997.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical waveguide gratings having roughened cladding for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical waveguide gratings having roughened cladding for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical waveguide gratings having roughened cladding for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2919588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.