Optical transmission systems and apparatuses including bragg...

Coating apparatus – Gas or vapor deposition – Multizone chamber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S720000, C118S724000, C118S725000

Reexamination Certificate

active

06702897

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not Applicable
BACKGROUND OF THE INVENTION
The present invention is directed generally to communication networks and systems. More particularly, the invention relates to optical WDM systems and optical components employing Bragg gratings, and methods of making Bragg gratings for use therein.
Optical communication systems transmit information by generating and sending optical signals corresponding to the information through optical transmission fiber. Information transported by the optical systems can include audio, video, data, or any other information format. The optical systems can be used in telephone, cable television, LAN, WAN, and MAN systems, as well as other communication systems.
Information can be optically transmitted using a broad range of frequencies/wavelengths, each of which is suitable for high speed data transmission and is generally unaffected by conditions external to the fiber, such as electrical interference. Also, information can be carried using multiple optical wavelengths that are combined using wavelength division multiplexing (“WDM”) techniques into one optical signal and transmitted through the optical systems. As such, optical fiber transmission systems can provide significantly higher transmission capacities at substantially lower costs than electrical transmission systems.
One difficulty that exists with WDM systems is that the various signal wavelengths often have to be separated for routing/switching during transmission and/or reception at the signal destination. In early WDM systems, the wavelength spacing was limited, in part, by the ability to effectively separate wavelengths from the WDM signal at the receiver. Most optical filters in early WDM systems employed a wide pass band filter, which effectively set the minimum spacing of the wavelengths in the WDM system.
Diffraction gratings were proposed for use in many transmission devices; however, the use of separate optical components in free space configurations were cumbersome and posed serious problems in application. Likewise, etched optical fiber gratings, while an improvement over diffraction gratings, proved difficult to effectively implement in operating systems.
The development of holographically induced fiber Bragg gratings has facilitated the cost effective use of grating technology in operating optical transmission systems. In-fiber Bragg gratings have provided an inexpensive and reliable means to separate closely spaced wavelengths. The use of in-fiber Bragg grating has further improved the viability of WDM systems by enabling direct detection of the individually separated wavelengths. For example, see U.S. Pat. No. 5,077,816 issued to Glomb et al.
Holograpically written optical fiber Bragg gratings are well known in the art. See, for instance, U.S. Pat. Nos. 4,725,110 and 4,807,950, which are incorporated herein by reference. Holographic gratings are generally produced exposing an optical waveguide, such a silica-based optical fiber or planar waveguide, to an interference pattern produced by intersecting radiation beams, typically in the ultraviolet frequency range. The intersecting beams can be produced interferometrically using one or more radiation sources or using a phase mask. For examples, see the above references, as well as U.S. Pat. Nos. 5,327,515, 5,351,321, 5,367,588 and 5,745,617, and PCT Publication No. WO 96/36895 and WO 97/21120, which are incorporated herein by reference.
Bragg gratings provide a versatile means of separating wavelengths, because the wavelength range, or bandwidth, over which the grating is reflective as well as the reflectivity, can be controlled. Initially, however, only relatively narrow bandwidth, low reflectivity Bragg gratings could be produced using holographic methods.
It was soon found that the sensitivity of the waveguide to ultraviolet radiation and the resulting bandwidth and reflectivity could be greatly enhanced by exposing the waveguide to hydrogen and its isotopes before writing the grating. Hydrogenation of the fiber was originally performed as a high temperature annealing process. For example, see, F. Ouellette et al., Applied Physics Letters, Vol. 58(17), p. 1813, (4 hours at 400° C. in 12 atm. of H
2
) or G. Meltz et al., SPIE International Workshop on Photoinduced Self-Organization in Optical Fiber, May 10-11, 1991, Quebec City, Canada, paper 1516-18 (75 hours at 610° C. in 1 atm. H
2
). It was later found that the hydrogenation could be performed at lower temperatures ≦250° C. with H
2
pressures ≧1 atm., if a sufficient length of time is permitted for hydrogen to get into the fiber. See U.S. Pat. No. 5,235,659 and its progeny.
While low temperature hydrogenation takes longer to perform, presumably due, at least in part, to slower hydrogen diffusion rates, it provides benefits that typically offset the time penalty. For example, the low temperature hydrogenation generally does not damage polymer coatings that are typically used to protect the optical fiber cladding and core. Also, there are fewer safety issues with handling hydrogen at lower temperatures and pressures.
Although low temperature hydrogenation is effective for introducing hydrogen into the fiber, the gratings written into the fiber must still be annealed at higher temperatures to stabilize the reflectivity of the grating. See U.S. Pat. Nos. 5,235,659 and 5,620,496. One technique that may increase grating stability written in low temperature hydrogenated fiber is described in OFC'99 PostDeadline Paper PD20 (1999) (“PD20”). In PD20, low temperature hydrogenated fiber was exposed to a uniform UV beam prior to writing grating to vary the fiber structure. In addition, the fiber was low temperature annealed at 125° C. for 24 hours before writing the grating to drive off at least some of the hydrogen from the fiber. The high reflectivity gratings that were written in the low temperature annealed fiber did not vary significantly, when exposed to a subsequent low temperature anneal at 125° C.
A shortcoming of writing Bragg gratings in hydrogen loaded fiber is that the fiber is more difficult to splice. Therefore, splicing efficiencies are decreased and increased processes must be put into place to ensure proper handling of the fiber. High temperature annealing of the fiber to remove hydrogen is limited to only portions of the fiber in which the coating has been removed to write the grating. In techniques that do not require the coating to be removed, annealing of the grating is also limited to temperatures that do not damage the coatings.
The prominent role assumed by holographically induced Bragg gratings in fiber and other waveguide optical components and systems requires that improved techniques for the production of Bragg gratings be continually developed. Likewise, the improvements in Bragg grating technology will further provide for the continued development of increasingly flexible, higher capacity, and lower cost optical systems.
BRIEF SUMMARY OF THE INVENTION
The apparatuses and methods of the present invention address the above need for improved Bragg grating production techniques and optical components and systems that include the Bragg gratings. Optical components and transmission system of the present invention includes at least one Bragg grating prepared in accordance with the present invention. In various embodiments, Bragg grating of the present invention are provided to stabilize optical signal and/or pump sources, perform selective filtering in transmission and/or receiving, and other grating based applications as may be known in the art.
Methods of the present invention include selectively hydrogenating one or more selected sections of an optical waveguide in general, and particularly optical fiber. Selective hydrogenation can be performed by selectively establishing local conditions in a first environment conducive to introducing greater quantities of hydrogen into selected sections than into non-selected sections, which are maintained in a second environment. The extent of s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical transmission systems and apparatuses including bragg... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical transmission systems and apparatuses including bragg..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical transmission systems and apparatuses including bragg... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3278045

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.