Electrical connectors – With coupling movement-actuating means or retaining means in... – Retaining means
Reexamination Certificate
2000-07-27
2002-02-19
Sircus, Brian (Department: 2839)
Electrical connectors
With coupling movement-actuating means or retaining means in...
Retaining means
C439S354000, C439S138000
Reexamination Certificate
active
06347954
ABSTRACT:
CROSS REFERENCES:
This application is copending with the U.S. patent applications with an unknown serial numbers filed on the same date with the invention and titled “AN INTERCONNECTION BRACKET USED IN AN OPTICAL TRANSCEIVER MODULE”, “A REVERTIBLE SHIELDING DOOR USED IN AN OPTICAL TRANSCEIVER MODULE AND THE OPTICAL TRANSCEIVER MODULE USING THE SAME”, and “OPTICAL TRANSCEIVER HOUSING HAVING RESILIENT LATCHES OPTIONALLY ATTACHED THERETO” all of which have one common inventor and the same assignee with the invention.
BACKGROUND OF THE INVENTION
1. Field of The Invention
The present invention relates to an optical transceiver module, particularly to one which is installed with resilient latches for detachably fixing to receptacle, with interconnection bracket for fixing diodes therein, and with shielding door for eye protecting when a mating plug is withdrawn from the module.
2. The Prior Art
Optical transceiver modules have been used for bi-directional transmission of data between an electrical interface and an optical data link. The optical transceiver module receives electrically encoded data signals which are converted into optical signals and transmitted over the optical data link. Likewise, the module receives optically encoded data signals which are converted into electrical signals and transmitted onto the electrical interface. The module may be inserted into memory card assembly fixed in a backplane of a n exchange system or a huge server. U.S. Pat. No. 3,611,752 has disclosed a removable optical transceiver module having a main housing which consists of a potting box with potting material inserted therein. In addition, a circuit board is encased by the potting material. The circuit board has a photo diode and a laser diode soldered thereon. The diodes extend outside of the potting box through a recess. A recess cover is provided for forming a liquid tight seal between the recess cover, the potting box, and the diodes. Two releasable latches are integrally molded with the transceiver housing at two sides thereof. The module housing may be pluggable via the releasable latches having detents received in apertures of a receptacle. The module may be withdrawn from the receptacle by pressing the releasable latches and simultaneously pulling the module out of the receptacle. However, the releasable latch is apt to be broken at the interconnection point to the housing for several times of insertion/withdrawal. Moreover, some of the transceivers do not need the releasable latches due to its specific configuration to the card assembly. Therefore, it is requisite to provide a separate releasable latch which may be optionally configured to the transceiver housing so that the transceiver housing can be used for either a first configuration needing the latches or an alternative configuration not needing the latches.
It is known that the positioning and installation of the photo diode and the laser diode to the module is important. U.S. Pat. No. 5,611,752 discloses an optical transceiver module having a potting box with potting material inserted therein. A printed circuit board is encased by the potting material. The printed circuit board has a photo diode and a laser diode soldered thereon before it is installed in the potting box. The photo diode and the laser diode extend outside of the potting box through a recess. A recess cover is provided for forming a liquid tight seal between the recess cover, the potting box, and the photo and laser diodes. With this structure, the photo and laser diodes need to be soldered on the printed circuit board first and then they are together installed inside the potting box. However, additional jigs or the like are required for aiding the diodes to be soldered to the printed circuit board before they are installed in the transceiver module. It is requisite to provide an interconnection bracket which is part of the transceiver module for simultaneously fixing the diodes and the printed circuit board in position before the diodes are soldered to the printed circuit board.
It is also known that the photo signal emitted from the laser diode is harmful to human eyes. Therefore, in U.S. Pat. No. 5,879,173, a shielding door is provided in an entry of a receptacle which receives the optical transceiver. A spring such as a torsion spring is additionally mounted on a pivotable post of the shielding door for returning the shielding door to its closed position parallel to the front face of the receptacle's entry. However, the spring is apt to escape from its constant position due to the frequent open/close of the shielding door. Therefore, it is requisite to provide a new shielding door having a self-resilient structure without the need of an extra spring.
SUMMARY OF THE INVENTION
The primary purpose of the present invention is to provide a new optical transceiver module detachably engaged with an external receptacle and capable of retaining diodes and a printed circuit board before soldering without the aid of zigs or the like.
Another purpose of the present invention is to provide a new optical transceiver module for detachably engaging with an external receptacle and preventing users from being hurt by radiation light emitted from the module.
Further another purpose of the present invention is to provide a new optical transceiver module having a bracket for retaining diodes and a printed circuit board and having a revertible shielding door for eye protection.
According to a first aspect of the present invention there is provided an optical transceiver module comprising a base having a bottom plate and two side walls extending upward from the bottom plate, each side wall having a reception socket formed therein. A latch is resiliently and removably fixed to the reception socket and includes a deformable portion extending out of the reception socket. An interconnection bracket is positioned in the base, removable in vertical direction and fixed in horizontal direction with respect to the base. Two diodes and a circuit board are fixed to the interconnection bracket before the diodes are soldered to the circuit board.
According to a second aspect of the present invention there is provided an optical transceiver module comprising a base having a bottom plate and two side walls extending upward from the bottom plate, each side wall having a reception socket formed therein. A latch is resiliently and removably fixed to the reception socket and having a deformable portion extending out of the reception socket. A revertible shielding door is pivotably positioned in a front face of the base and remain perpendicular to the bottom plate. A spring arm extends from one end of the revertible shielding door and is fixed to an intermediate portion of the base, so that when the revertible door is pivotably moved with respect to the front face of the base, the spring arm is deformed and preserves a recovering tension therein.
According to a third aspect of the present invention there is provided an optical transceiver module comprising a base having a bottom plate and two side walls extending upward from the bottom plate. An interconnection bracket is positioned in a front portion of the base and slidably retained between the side walls. Two diodes are fixed in the interconnection bracket. A circuit board is fixed to the interconnection bracket and soldered to the diodes. A revertible shielding door is pivotably positioned in a front face of the base and remain perpendicular to the bottom plate. A resilient arm extends from one end of the revertible shielding door and it is fixed to an intermediate portion of the base. When the revertible door is pivoted to be no more perpendicular to the bottom plate, the spring arm is deformed and preserves a recovering tension therein.
REFERENCES:
patent: 3993390 (1976-11-01), Eigenbrode
patent: 5564933 (1996-10-01), Bouchan et al.
patent: 5879173 (1999-03-01), Poplawnski et al.
patent: 5966487 (1999-10-01), Gilliland
patent: 6178096 (2001-01-01), Flickinger
Hwang Jenq-Yih
Jones Dennis B.
Wong Eddy
Chung Wei Te
Hon Hai - Precision Ind. Co., Ltd.
Prasad Chandrika
LandOfFree
Optical transceiver module does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical transceiver module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical transceiver module will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2957328