Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2000-09-01
2002-10-22
Martin, David S. (Department: 2841)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S816000, C361S818000, C174S034000
Reexamination Certificate
active
06469906
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of optical transceiver packaging, and adapting a first transceiver package to a second transceiver package, in particular adaptation of a small form factor (SFF) optical transceiver package to a 1×9 optical transceiver package application.
2. Background Information
A number of integrated circuit (IC) packaging forms are known in the art, including dual in-line pin or DIP and single in-line pin (SIP) packaging, among others. The type of packaging used for a particular IC application may depend on a variety of factors relating to component layout, existing IC packaging, production equipment, and the like. Once an IC component is chosen, original equipment manufacturers (OEM's), circuit board designers, etc., base their designs on the type of packaging used for the particular IC component chosen. Disadvantageously, however, a circuit board designed for a particular DIP IC would have to be redesigned if a different IC having a different type of packaging, e.g., SIP, was to be used. Of course, besides the packaging, the particular function for each pin, the signal levels required, and the supply voltage used, for example, may vary from IC to IC. The packaging include pin location and pin function, and defines a particular device's footprint or pin out.
From the point of view of the IC manufacturer, once their IC has been accepted in the marketplace in a particular package configuration, the demand for the product in that package weighs against changing the packaging. Also, a potential competitor experiences pressure to conform to the established product package configuration to gain any market share for their competing product. From the point of view of the OEM purchaser of an IC, competition is good because it tends to drive down their costs, and helps to ensure alternate supplies are available.
However, sometimes a situation occurs where there are comparable IC components with different packaging each having a substantial share of the market. This may occur when a company is both an IC manufacturer and a manufacturer of systems using the IC. The company may find it advantageous to use a unique packaging in their equipment designs to control the market for replacement parts. This may be for engineering reasons, i.e., to prevent the use of lower quality components which would degrade the equipment operation, or for economic reasons, i.e., to get a lock on the market for replacement parts.
This strategy may have unintended negative effects, however, since a design with a single source of replacement parts may be less desirable to the end user, since it could lead to shortages and extended down times. Further, the part with the unique packaging cannot compete with already established functional equivalents having a different design. Whatever the reason for selecting a particular packaging, potential market share for an IC may be unrealized because of the particular packaging selected, as in the example where other incompatible packaging is in use in functionally comparable IC's. Just such a situation exists in the optical transceiver marketplace where there are two incompatible packages used, i.e., the small form factor (SFF) 2×5 or 2×6 dual in-line packaging, and the 1×9 single in-line packaging.
Therefore, a need exists for a way to overcome such packaging limitations so that competition is enhanced and the market for a particular product is expanded. In particular, this need exists in the rapidly emerging field of optical communications and related devices.
There may be other differences between devices besides the packaging, such as signal levels and supply voltages required. It would be advantageous to adapt these other differences at the same time the packaging is adapted.
SUMMARY OF THE INVENTION
It is, therefore, a principle object of this invention to provide a scheme to adapt a first IC packaging, e.g., a small form factor (SFF) 2×5 or 2×6 optical transceiver packaging, to a second IC packaging, e.g., a 1×9 optical transceiver package.
It is another object of the invention to provide a method and apparatus that solves the above mentioned problems so that such differently packaged but functionally equivalent devices can be interchanged.
These and other objects of the present invention are accomplished by the method and apparatus disclosed herein.
Advantageously, the invention provides a significant opportunity to get into the 1×9 optical transceiver market by adapting existing small form factor (SFF) products to a 1×9 transceiver footprint or pin out. Using the adapter according to an embodiment of the invention, a manufacturer who is not currently in the 1×9 transceiver market could enter that market with relatively little development expense, and possibly steer potential customers toward its SFF product line.
According to an aspect of the invention, an adapter for adapting a first circuit package to a second circuit packaging, is provided having a substrate for receiving the first circuit package thereon, a plurality of connectors disposed on the substrate configured in the form of the second circuit packaging, and interconnect means on the substrate for interconnecting the first circuit package to the plurality of connectors.
According to another aspect of the invention, the first circuit package comprises a first transceiver package, and the second circuit packaging comprises a second transceiver packaging.
According to another aspect of the invention, the first transceiver package comprises a small form factor package, and the second transceiver packaging comprises a 1×9 packaging.
According to another aspect of the invention, at least one electronic component is disposed on the substrate and interconnected with the first transceiver package and the second transceiver packaging.
According to another aspect of the invention, the at least one electronic component comprises at least one voltage regulator.
According to another aspect of the invention, the at least one electronic component comprises at least one signal level translation means for translating input and output signals between a first signal level associated with the first transceiver package and a second signal level associated with the second transceiver packaging.
According to another aspect of the invention, a metal cover for providing a ground contact is provided.
According another aspect of the invention, the adapter is for mounting on an electrical system circuit board, and further comprises an insulator pad for electrically insulating the at least one electronic component disposed on the substrate from the electrical system circuit board.
These and other aspects of the invention will become apparent from the detailed description set forth below.
REFERENCES:
patent: 4993803 (1991-02-01), Suverson et al.
patent: 5602860 (1997-02-01), Masonson
patent: 5984731 (1999-11-01), Laity
patent: 6135793 (2000-10-01), Babineau
patent: 6142802 (2000-11-01), Berg et al.
patent: 6178096 (2001-01-01), Flickinger et al.
patent: 6220873 (2001-04-01), Samela et al.
patent: 6267606 (2001-07-01), Poplawski et al.
Baltz Jeremy J.
Hanley Michael Francis
Koerber Darwin Lee
Bussan Matthew J.
Lynt Christopher H.
Martin David S.
Phan Thanh S.
LandOfFree
Optical transceiver adaptation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical transceiver adaptation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical transceiver adaptation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2975324