Optical: systems and elements – Single channel simultaneously to or from plural channels – By surface composed of lenticular elements
Reexamination Certificate
1999-09-14
2001-07-10
Ben, Loha (Department: 2873)
Optical: systems and elements
Single channel simultaneously to or from plural channels
By surface composed of lenticular elements
C359S211200, C359S710000, C396S330000, C355S132000, C219S121670, C250S203300
Reexamination Certificate
active
06259563
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an optical system for image rotation comprising two Pechan prisms located on an optical axis and a lens system located on the same optical axis, whereby the two Pechan prisms can be rotated relative to each other around the optical axis.
2. Description of Related Art
A similar optical system is described in W087/07391. This system is designed to be used in the printing industry, where under certain conditions it is necessary to rotate an image by 90°. In this system, one of the two Pechan prisms is located in the air space between an 8-lens image-reversing lens system and its subject plane, and the other Pechan prism is located in the air space between the lens system and its focal plane.
The optical system of the prior art has the disadvantage that the Pechan prisms must be made of expensive, heavy and highly refractive glass, the refractive index of which is on the order of magnitude of 1.73 to 1.76.
The present invention provides an optical system of the type described above that is both lighter in weight and more economical to manufacture than similar systems of the prior art.
SUMMARY OF THE INVENTION
The present invention contemplates that two Pechan prisms are located next to one another, without the interposition of lenses, and that the lens system comprises two lens subsystems that are located one on either side of the pair of Pechan prisms, and between which there is a telecentric beam path. In the optical system of the present invention, a telecentric beam path therefore dominates in the Pechan prisms in parallel and between the two Pechan prisms. As a result of the arrangement of the Pechan prisms of the invention and the configuration and arrangement of the lens system, inside the prisms there is a parallel beam path with small angles of the beam width. This represents a fundamental difference between the system of the invention and similar systems of the prior art. This difference becomes particularly significant if the conditions on the 45° bevel of the Pechan prisms are taken into consideration, because in the optical system of the invention, with an appropriate design of the lens system, a small beam angle (e.g. a maximum±3.8°) can be maintained. Under these conditions, total reflection on the 45° bevel can be achieved even with a relatively low-refractive glass (e.g. with a refraction index of 1.52). In the optical system of the prior art, on the other hand, there is no parallel beam path inside the Pechan prisms, which means that the angles of incidence that occur on the 45° bevels are significantly less than or greater than 45°, which, on account of the total reflection inside the prisms at excessive field angles—as described above—makes it necessary to use heavy and more expensive highly refractive glass.
Compared to similar systems of the prior art, the optical system of the present invention is also characterized by the additional advantage that it requires fewer optical correction elements. As a result of the parallel beam path with a small angle of the beam width inside the prisms and between the prisms, the (angle-dependent) aberrations that must be corrected are significantly smaller than in the case of the generic optical system of the prior art. In the system of the invention, the geometric aberrations are therefore easier to compensate than in the prior art. The completely symmetrical combination of the prisms and lens systems (depending on the scale of the imaging) that is possible in the context of this invention also makes it easier to correct the system. In the ideal case (&bgr;′=−1 ), there is also a complete compensation for bilateral error. For example, with the optical system of the invention, only the color error that occurs as a result of the long optical path through the glass needs to be corrected. It is appropriate if, for the manufacture of the lenses of the lens system, glass with anomalous partial dispersion is used, to keep the color cross error and longitudinal errors within specified dimensions.
The aspects of the optical system explained above also have an altogether advantageous effect in that it becomes possible to realize a relatively high aperture (transmission). The relative geometric aperture of the optical system of the instant invention can be greater than in similar systems of the prior art, because a telecentric beam path dominates between the prisms. The result, for the chief rays, are angles in the prism system of approximately 0°, i.e. parallel to the optical axis. The peripheral rays are oriented as a function of the aperture/type of glass of the prism. For example, with a BK
7
prism, there is an allowable aperture in the intermediate image plane (see below) of approximately 0.07 or k=7.5. When a more highly refractive glass is used for the manufacture of the prisms (e.g. SK16 with a refraction index of 1.62), there is a maximum aperture of 0.12 or k=4.2. In this case, a maximum beam angle of ±6.9° is allowable. In this context, it should be noted that glass of type SK16 differs significantly in terms of both weight (factor 0.94) and price (factor 0.23) from a glass of type LAK10 with a refraction index of 1.73, of the type that must be used to manufacture the prisms of the generic optical system of the prior art.
In the optical system of the invention, it is also possible to use two absolutely identical Pechan prisms, which, in turn, results in a cost advantage over systems of the prior art. The prisms are also far more compact than in the image rotation optics system of the prior art, because the prism group is located inside the optical image and is determined only by the aperture, but not by the field angle of the system. This situation is also expressed in a reduction of cost and weight.
A first preferred refinement of the optical system of the invention is characterized by the fact that an intermediate or first image is generated by a suitable tuning of the lens system between the two Pechan prisms. This intermediate image makes it possible to easily connect any desired optical unit to the optical system. This image can also be transmitted by different optical systems. In this sense, it is possible, if necessary, to separate the optical system of the invention between the two Pechan prisms, and to realize any desired optical function in the telecentric beam path that is present there. For example, a scale can be inserted. In this context it should be noted that the distance between the two prisms must be sufficiently great so that the intermediate image generated inside the prism groups is not disrupted by surface impurities.
The optical system of the invention can be very advantageously used in a variety of applications. Among these potential applications is the printing industry. No less important is the use of the optical system claimed by the invention in connection with ARRI™ film cameras. Conventional ARRI™ standard optics can be used by a 1:1 imaging system. The primary advantage of the use of the optical system of the present invention in connection with ARRI™ film cameras is the rotation on the optical axis. In systems of the prior art, image rotation required a system in which there was a 90° deflection (“periscope”). In this application, the Pechan prism that faces the image is appropriately mounted so that it can rotate, because in this case the rotational movement of the prism and the rotation of the image generated are in the same direction. This invention can also be used to great advantage in the field of testing and measurement technology, in particular for the inspection of the inside walls of tubes and other small-diameter cavities. In this case, the optical system of the invention makes it possible to compensate for the rotation of the image that is caused by the rotation of a system of mirrors.
Solely for purposes of clarification, it should be noted at this point that, in the context of this invention, the relative rotation of the two Pechan prisms in relation
Ben Loha
Webb Ziesenheim & Logsdon Orkin & Hanson, P.C.
LandOfFree
Optical system for image rotation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical system for image rotation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical system for image rotation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2461317