Optical system for compensation of image shake

Optical: systems and elements – Image stabilization – By movable refractive structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S554000, C359S690000

Reexamination Certificate

active

06512633

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical system, and more particularly to an optical system having a hand-shake correction function that prevents blurring of an image due to a hand shake (such as occurs when a photograph is taken with a camera held with hands).
2. Description of the Prior Art
Conventionally, the typical causes for unsuccessful photographing are hand shakes and incorrect focusing. In recent years, however, most cameras have come to be equipped with an autofocus mechanism and, as a result, unsuccessful photographing is caused less and less often by incorrect focusing as the focusing accuracy of the autofocus mechanism improves. On the other hand, camera shakes still persist as a typical cause for unsuccessful photographing. In particular, hand-shake correction is eagerly sought after as an indispensable function in a telephoto optical system, since telephoto lenses have long focal lengths and are therefore more susceptible to hand shakes.
In a telephoto optical system, hand shakes are conventionally corrected by decentering part of its lens units. For example, U.S. Pat. No. 4,844,602 discloses an optical system in which a telephoto fixed-focal-length lens is divided into, from the object side, a fixed lens unit and a correction lens unit and in which hand-shake correction is achieved by moving the correction lens unit in a direction perpendicular to the optical axis. Moreover, U.S. Pat. No. 5,121,978 discloses an optical system which consists of positive, negative, positive, and negative lens units and in which hand-shake correction is achieved by moving the second or third lens unit in a direction perpendicular to the optical axis. Furthermore, Japanese Laid-open Patent Application No. H7-270724 discloses an optical system which consists of positive, negative, and positive lens units and in which the second lens unit is used for focusing and the third lens unit is moved along a direction perpendicular to the optical axis for hand-shake correction.
In the optical system proposed in U.S. Pat. No. 4,844,602 mentioned above, the correction lens unit needs to be moved 2 mm to correct an image shake of 2 mm on the image plane. This means that a movement amount of 2 mm is required to correct a hand shake of approximately 0.4°. In other words, the correction lens unit of this optical system has a low correction sensitivity, and thus an extremely large movement amount of the correction lens unit is required to correct a hand shake of a large angle. As the movement amount of the lens unit becomes larger, the lens unit needs to have a lager diameter, and this inevitably makes the size of the entire optical system larger.
On the other hand, the optical system proposed in Japanese Laid-open Patent Application No. H7-270724 mentioned above is designed to cope with hand shakes of approximately 0.2° at most. In reality, however, camera shakes of larger angles may occur, for example, when a night scene is photographed with a camera held with hands. Accordingly, to allow photographing of night scenes with a camera held with hands, this optical system needs to be modified to cope with hand shakes of angles greater than 0.2°. This, however, leads to intolerable degradation of aberration characteristics.
Furthermore, the optical system proposed in U.S. patent application Ser. No. 5,121,978 mentioned above has only a moderate aperture ratio. Accordingly, it is not possible to use this optical system to realize a large-diameter telephoto lens.
Moreover, in recent years, growing interest in close-up photographing has brought various types of close-up lenses (generally called macro lenses) into the market. However, as the photographing magnification increases, the depth of focus decreases, and accordingly close-up lenses become more and more susceptible to hand shakes. As a result, it can safely be said that unsuccessful close-up photographing is caused exclusively by hand shakes, and therefore a hand-shake correction function is eagerly sought after in an optical system for close-up photographing.
Close-up lenses provided with a hand-shake correction function are proposed, for example, in European Laid-open Patent Application No. 655,638. One close-up lens proposed in this European Laid-open Patent Application consists of three, that is, positive, positive, and negative, lens units, and it corrects hand shakes by moving the entire third lens unit, as a correction lens unit, in a direction perpendicular to the optical axis. Another close-up lens proposed in this European Patent Application consists of three, that is, positive, positive, and negative, lens units, and it corrects hand shakes by moving part of the third lens unit, as a correction lens unit, in a direction perpendicular to the optical axis. Still another close-up lens proposed in this European Patent Application consists of three, that is, positive, negative, and positive, lens units, and it corrects hand shakes by moving part of the third lens unit, as a correction lens unit, in a direction perpendicular to the optical axis.
However, the close-up lenses proposed in European Laid-open Patent Application No. 655,638 are defective in that they all suffer from unsatisfactory aberration characteristics (in particular, large off-axial image-point movement errors) during hand-shake correction.
Moreover, a single-focal-length lens provided with a hand-shake correction function is proposed, for example, in Japanese Laid-open Patent Application No. H7-270724. The single-focal-length lens proposed in this Japanese Laid-open Patent Application consists of three, that is, positive, negative, and positive, lens units, and it achieves focusing by moving the second lens unit toward the image side and corrects hand shakes by moving the third lens unit in a direction perpendicular to the optical axis.
However, in a three-lens-unit construction consisting of positive, negative, and positive lens units, the third lens unit needs to have a relatively large diameter. For this reason, if hand shakes are corrected by moving the third lens unit in a direction perpendicular to the optical axis in such a construction, the hand-shake correction drive system for driving the third lens unit in a direction perpendicular to the optical axis needs to be designed to bear a considerably large load.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an optical system that has a hand-shake correction function, that has a hand-shake correction lens unit with a sufficiently high correction sensitivity, that keeps satisfactory optical performance even when correcting hand shakes of considerably large angles, and that is suitably used in a telephoto lens system with a large aperture ratio.
Another object of the present invention is to provide an optical system that has a hand-shake correction function, that corrects aberrations properly at the same time as correcting hand shakes, and that is suitable as a taking lens system for close-up photographing.
Still another object of the present invention is to provide an optical system that offers satisfactory optical performance over the entire range from the state focused on an infinite distance to the state focused on a close-up distance and that minimizes the load to be borne by the hand-shake correction drive system.
To achieve the above objects, according to one aspect of the present invention, an optical system is provided with, from an object side, a first lens unit having a positive refractive power; a second lens unit having a negative refractive power as a whole, moved toward an image side during focusing from an object at an infinite distance to an object at a finite distance, and including a sub lens unit that is moved in a direction perpendicular to an optical axis to correct an image shake; and a third lens unit having a positive refractive power.
According to another aspect of the present invention, an optical system is provided with, from an object side, a first lens unit having a positive refractive power; a second lens un

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical system for compensation of image shake does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical system for compensation of image shake, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical system for compensation of image shake will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3025703

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.