Optical system, especially a projection light facility for...

Optical: systems and elements – Lens – With support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06388823

ABSTRACT:

The invention relates to an optical system, in particular a projection system for microlithography, in particular exposure with a slit-shaped image field or which is not rotationally symmetrical, which has an optical element, in particular, a lens or a mirror which is arranged in a mount, and actuators which engage a portion of the mount and/or the optical element.
An optical system of the kind mentioned hereinabove is described in EP 0 678 768 A2. Step and scan processes are used therein, whereby only a narrow, slit-shaped strip of a mask is transferred to a wafer. In order to expose the whole field, a reticle is used, and the wafer is displaced sideways (scanning).
However, it is disadvantageous in this case that a rotationally asymmetrical illumination impression arises, above all at the lens near the wafer, due to this slit geometry. This means that the temperature distribution on the lens arising due to the unavoidable lens heating is likewise rotationally asymmetrical and therefore leads, due to the linear dependence of refractive index on temperature and thermal expansion, to image errors, e.g., astigmatism, on the optical axis.
In 193 nm lithography, the 193 nm light passing through the quartz glass lenses leads to a volume decrease of the quartz glass, increasing monotonically with NI
2
. Here N is the number of laser pulses and I is the pulse dose. Furthermore, an increase of refractive index results. Since the increase of refractive index overcompensates for the decrease of optical path length due to the shrinkage, the consequence of this effect termed compaction is a disturbance of the wavefront. This leads, just like a lens heating, to image errors such as astigmatism on the optical axis.
In contrast to a compensation of the lens heating, there is no passive compensation for the compaction effect. Here the change of the wavefront had to be compensated actively, by changing a lens element. Since it is not possible to use an active mirror in a refractive design (the cost of introducing an additional mirror for image error compensation in general excludes this), one or more lenses have to be used as “adjusting members”. In order to correct astigmatism on the axis, movements along the optical axis, and also decentering, are excluded. Hence all translational degrees of freedom are unavailable as possibilities for a correction.
In EP 0 678 768 it has now been proposed to use a lens as the “adjusting member”, in order to correct the image errors produced by a non-uniform heating of the lens. For this purpose, it is provided according to FIG. 11 to allow forces acting in the radial direction to act on the lens. However, only an asymmetrical change of thickness is produced by the pressure forces thus produced on the lens.
In EP 0 660 169 A1, a projection exposure device for microlithography is described, in which the objectives are provided with correction elements. For this purpose, among other things, a lens pair is provided, which is rotatable around the optical axis. The refractive power is thereby altered by the shape of the lens by the superposition of a cylindrical meniscus shape over a spherical lens.
The present invention has as its object to provide an optical system of the kind stated at the beginning, in which the image errors unavoidably arising due to the non-uniform temperature distribution can be corrected or minimized with simple means.
According to the invention, this object is attained by the features stated in the characterizing portion of claim
1
.
In contrast to the prior art, not only are pressure forces produced which result solely in an asymmetrical thickness change, but also a bending of the optical element, for example, a lens, is brought about by means of the thrust forces or torsion which re produced, and is chosen so that the unavoidably arising image errors are compensated to the greatest possible extent. With the actuators according to the invention, an optical element, such as for example a lens, can be controllably deformed by a few 100 nm up to &mgr;m. In this manner, for example, a compensation of astigmatism r
2
and r
4
can be attained.
In the process according to the invention, the desired temperature distributions can be quickly and reliably attained with simple means. This is in particular the case when only certain image errors, for example, image errors of low order, are to be corrected.
A further very important advantage of the invention is that if necessary “overcompensations” and the additional compensation of production errors are possible. Instead of a symmetrizing of several individual lenses, as is the case in the prior art, it is also possible to “overcompensate” individual lenses, i.e. to intentionally make the temperature distribution or deformation asymmetrical “in another direction”. In this manner, the overall result is a compensation of the whole objective or of the illumination device.
As regards the compensation of production errors, there are two variants, namely a simultaneous compensation of inadvertent production errors and an intentional building in of a fixed deflection, in order to halve the required amount of correction.
With the process according to the invention, a simultaneous compensation is possible of lens heating and of the compaction effect of the optical element.
The optical system according to the invention can be used with particular advantage in semiconductor lithography, since the image errors arising due to the progressive scaling down of the structures to be imaged likewise have to be minimized.
With the actuators according to the invention, an astigmatism can be controllably produced for the compensation of the thermal astigmatism and the effects due to compaction in the optical element, e.g., a lens.
It is also of advantage that it is furthermore possible, in dependence on the arrangement and number of actuators, to produce other deformations of the optical element.


REFERENCES:
patent: 4155631 (1979-05-01), Borsare et al.
patent: 4226507 (1980-10-01), Fuschetto
patent: 4492431 (1985-01-01), Eitel et al.
patent: 4993823 (1991-02-01), Schaffer, Jr. et al.
patent: 5053794 (1991-10-01), Benz
patent: 5457577 (1995-10-01), Wilson
patent: 5822133 (1998-10-01), Mizuno et al.
patent: 5986827 (1999-11-01), Hale
patent: 3404063 (1984-02-01), None
patent: 0 660 169 (1994-12-01), None
patent: 0 678 768 (1995-04-01), None
patent: WO 96/13741 (1996-05-01), None
Patent Abstract of Japan; Publication No. 11044834; date Feb. 16, 1999; Applicant Canon Inc.
Patent Abstract of Japan; Publication No. 10039208; date Feb. 13, 1998; Applicant Nikon Corp.
International Search Report, PCT/EP99/04246; published Dec. 29, 1999.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical system, especially a projection light facility for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical system, especially a projection light facility for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical system, especially a projection light facility for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2848180

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.