Optical sensor unit and procedure for the ultrasensitive...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S128000, C356S130000, C422S068100, C422S081000, C422S091000, C435S004000, C435S006120, C435S007100, C435S287100, C435S287200, C435S288700, C435S800000, C436S501000, C436S518000, C436S524000, C436S527000, C436S528000, C436S535000, C436S805000

Reexamination Certificate

active

06346376

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an optical sensor unit and to a procedure for accurate and ultrasensitive detection of chemical or biochemical analytes. An optical sensor unit is described combining several unique parts inching a laser light source, an optical detection module, and an integrated optical transducer chip. The optical transducer chip consists of a disposable carrier substrate coated with a waveguiding layer onto which sensing biomolecules are bonded in pattern fashion, said sensing biomolecules being capable of interacting with chemicals or bio-molecules of an analyte solution to induce changes in the effective refractive index.
More particularly, the invention relates to the detection of prions and prion binding molecules in pico- to femto-molar concentrations with the help of antibodies, preferably monoclonal, allowing specific detection of disease-specific prion proteins on surfaces engineered for low non specific binding of bioconstituents. Conversely, the biosensor is applicable to identify ligands to prion proteins if instead of the monoclonal antibodies, recombinant or highly purified PrP is bonded to the optical chip by a one-step procedure, which can be performed even by those not skilled in the art.
More generally, the sensor and the procedure according to the invention facilitates ligand screening of chemical and biochemical libraries.
BACKGROUND OF THE INVENTION
As the detection of prions and prion binding molecules is at this time of upmost importance for diagnosing and treating prion related diseases, this aspect will serve as guideline for the description of the invention. For a better understanding the abbreviations used hereinbefore and hereinafter are the following:
BSA
bovine serum albumin
BSE
bovine spongiform encephalopathy
CJD
Creutzfeldt-Jakob disease
EDTA
ethylenediaminetetraacetic acid
GPI-anchor
glycolipid-anchor which “ties” PrP to the outer
monolayer of the cell membrane
HEPES
hydroxyethyl-piperazineethane sulfonic acid
IO
integrated optical
PBS
phosphate-buffered saline
prion
proteinaceous infectious particle; the infectious agent of
prion diseases, supposedly consisting at least of PrP
sc
and maybe
another (other) yet unknown molecule(s)
PrP
prion protein; refers to the common amino acid sequence
rather than to a distinct conformation of two prion
protein isoforms
PrP
c
a normal host prion protein of unknown function; apparent
molecular weight 33-35 kDa, same amino acid chain, and
same glycosylation at two asparagine residues as PrP
Sc
.
This prion protein is after proteinase K treatment fully
digested.
PrP
Sc
the disease-specific, abnormal isoform of PrP
c
, with the
same amino acid chain, apparent molecular weight
33-35 kDa, glycosylated at two asparagine residues, is
after proteinase K treatment shortened to a 27-30 kDa
C-terminal fragment. Species-specific PrP
Sc
isoforms
may term: human PrP
Sc
(instead of PrP
CID
),
bovine PrP
Sc
(instead of PrP
BSE
) etc.
rb PrP
recombinant bovine prion protein (amino acids 25 to 242
of the bovine PrP gene) expressed in
E. coli
comprising
the bovine PrP open reading frame except for the
N-terminal signal sequence and the C-terminal
GPI-anchor sequence; both
are cleaved off during cellular processing. Since this
protein is not glycosylated it has a molecular weight of
23 kD.
SPOT
smart planar optical transducer
The references to the prior art reported hereinafter will be termed by the name of the first author and the publication year as mentioned below:
Basler, K., Oesch, B., Scott, M., Westaway, D., Walchli, M., Groth, D. F., Mc Kinley, M. P, Prusiner, S. B., and Weissmann, C. (1986). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417-428.
Borchelt, D. R., Scott, M., Taraboulos, A., Stahl, N., and Prusiner, S. B. (1990). Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J. Cell Biol. 110, 743-752.
Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H. P., DeArmond, S. J., Prusiner, S. B., Aguet, M., and Weissmann, C. (1992). Normal development and behaviour of mice lacking the neuronal cellsurface PrP protein. Nature 356, 577-582.
Düibendorfer, J., Kunz, R. E., Mader, E., Duveneck, G. L. and Ehrat, M. (1996) “Reference and Sensing Pads for Integrated optical Immunosensors,” Proc. SPIE, Vol. 2928, 90-97.
Gao, H., Kisling, E., Oranth, N., and Sigrist, H. (1994). Photolinker-polymer-mediated immobilization of monoclonal antibodies, F(ab′)
2
and F(ab′) fragments. Biotechnol. Appl. Biochem. 20, 251-263.
Gao, H., Sänger, M., Luginbüihl, R., Sigrist, H., Immunosensing with photo-immobilized immunoreagents on planar optical wave guides. Biosensors & Bioelectronics 10 (1995) 317-328.
Heding, A., Gill, R., Ogawa, Y., De Meyts, P, Shymko, R. M. (1996). Biosensor measurement of the binding of insulin-like growth factors I and II and their analogues to the insulin-like growth factorbinding protein-3. J. Biol. Chem. 271, 13948-52.
Kitamoto, T., Mohri, S., and Tateishi, J. (1989). Organ distribution of proteinase-resistant prion protein in humans and mice with Creutzfeldt-Jakob disease. J. Gen. Virol. 70, 3371-3379.
Korth, C., Stierli, B., Moser, M., Streit, P., Oesch, B. (1997) Immunological detection of prions. European Patent application No. 97102837.8.
Kunz R. E., “Process and device for determining quantities to be measured by means of an integrated optical sensor module”, U.S. Pat. No 5,442,169.
Kunz R. E., “Integrated Optical Sensors based on Hard Dielectric Films on Replicated Plastic Substrates”, Proc. 8th Eur. Conf. Integrated optics ECIO,97, Stockholm, Sweden, April 2-4, 1997, pp. 86-93.
Kunz, R. E. (1996). “Integrated Optical Modules for Chemical and Biochemical Sensing”. Bulletin of the Swiss Microtechniques Association (ASMT) 20,48-53.
Kunz, R. E, and Dübendorfer, J. (1995). “Miniature Integrated Optical Wavelength Analyzer Chip”. Optics Letters 20, 2300-2303.
Kunz, R. E., and Dübendorfer, J. (1996). “Novel Miniature Integrated Optical Goniometers”. Proc. EUROSENSORS X, Conference on Solid-State Transducers 3,905-908.
Kunz, R. E., Duveneck, G., and Ehrat, M., (1994). “Sensing Pads for Hybrid and Monolithic Integrated Optical Immunosensors”, Proc. SPIE 2331, 2-17.
Kunz, R. E., Edlinger, J., Sixt, P., and Gale, M. T. (1995) Replicated Chirped Waveguide Gratings for Optical Sensing Applications. Sensors and Actuators 47, 482-486.
Kurschner, C. and Morgan, J. I. (1995). “The cellular prion protein (PrP) selectively binds to bcl-2 in the yeast two-hybrid system. Molecular. Brain Research. 30, 165-168.
Lukosz, W. and Tiefenthaler, K., “Directional switching in planar waveguides effected by absorption-desorption processes,” lEE Conf. Publ. 227, 152-155 (1983).
Oesch, B. (1994). “Characterization of PrP binding proteins”. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 343, 443-445.
Oesch, B., Westaway, D., Walchli, M., McKinley, M. P., Kent, S. B., Aebersold, R., Barry, R. A., Tempst, P., Teplow, D. B., and Hood, L. E. (1985). “A cellular gene encodes scrapie PrP 27-30 protein”. Cell 40, 735-746.
Oesch, B., Teplow, D. B., Stahl, N., Serban, D., Hood, L. E., and Prusiner, S. B. (1990). “Identification of cellular proteins binding to the scrapie prion protein”. Biochemistry 29, 5848-5855.
Serban, D., Taraboulos, A., DeArmond, S. J., and Prusiner, S. B. (1990). “Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins”. Neurology 40, 110-117.
Stahl, N., Baldwin, M. A., Teplow, D. B., Hood, L., Gibson, B. W., Burlingame, A. L., and Prusiner, S. B. (1993). “Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing”. Biochemistry 32, 1991-2002.
The disease-specific forms of the prion protein (PrP
Sc
, PrP
BSE
) are part of the infectious particle causing transmissible neurodegenerative diseases like scrapie in sheep, bovine spongiform encephalopathy in cattle or Creutzfeldt-Jakob disease in humans. PrP
Sc
as well as PrP
BSE
differ from the normal cellular prion protein (PrP
c
) by their relative protease resistance (O

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical sensor unit and procedure for the ultrasensitive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical sensor unit and procedure for the ultrasensitive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical sensor unit and procedure for the ultrasensitive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2959246

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.