Optical sensor for detection of chemical species

Optics: measuring and testing – Refraction testing

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

356382, 25022714, 385 12, 385141, G01N 2141

Patent

active

056402341

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

This invention relates to an optical sensor useful for detecting, quantifying or differentiating chemical species in gaseous or liquid states, as well as an apparatus for detecting chemical species using said optical sensor.
Various types of optical sensors using planar optical waveguides have been known. For example, Tiefenthaler and Lukosz reported on the use of optical grating couplers as biochemical sensors (J. Opt. Soc. Am., B6 (1989) 209 and Sensors and Actuators, 15 (1988) 273). The sensors make use of the angular resonance condition of the excitation of a certain mode of light in a planar waveguide by a grating coupler. The adsorption of human immunoglobulins on the grating coupler changes the thickness and refractive index of the waveguide and, hence, the coupling angle of the light incident on or emerging from the waveguide. Thus, the measurement system under consideration utilizes the effect that the thickness and refractive index of an optical waveguide change upon adsorption of biochemical molecules on top of the waveguide. Such changes can be detected by measuring the coupling angle in the case where a grating coupler or a prism coupler is used. This detection corresponds to the measurement of effective refractive index of certain modes.
Reuter and Franke reported in Appl. Phys. Lett., 52 (1988) 678 a planar optical waveguide having a birefringent polyimide film for monitoring humidity. Light in TE and TM modes will be launched simultaneously into the planar waveguide by means of a prism coupler. The reported measurement system measures the difference between the effective refractive indices in TE and TM modes. This measurement requires special birefringent films. The output obtained by the measurement is a periodic function of the ambient humidity. If one wants to use the output in a certain application, for example, process control, a complex numerical operation system is necessary.
Also known are various optical sensors that utilize the swelling of thin polymer films due to the absorption or adsorption of gases or liquids. For example, Gauglitz et al. reported on a reflection spectroscopy method for gas or solvent detection via swelling of a polymer film (GIT Fachz. Lab., 7(1990) 889 and Abstracts of 1st European Conference on Optical Chemical Sensors and Biosensors, p. 143 (1992)). The setup for implementing the method uses a white light source and a spectrometer for analyzing spectrally the changes in reflected light.
Nylander et al. reported on a setup using the surface plasmon resonance method for gas detection in Sensors and Actuators, 3 (1982/3) 79. When implementing this method, the resonance condition for surface plasmons is greatly influenced by optical parameters of the polymer film used which, in turn, will change with the surrounding organic vapor.
Butler reported a sensor with a polymer film deposited at an end of a multimode optical fiber (Chemical, Biochemical and Environmental Fiber Sensor II, Proc. SPIE 1368 (1990) 46-54). Upon contacting chemical solvents, the polymer film swells to cause a change in reflectance at the fiber end.
The conventional sensors described above utilize the swelling of thin polymer films and detect it by various methods, including interference enhanced reflection (IER) and surface plasmon resonance for measuring the changes in the thickness or refractive index of the thin polymer film.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a guiding thin film that is to be used as an optical waveguide in an optical sensor for detecting gaseous or liquid chemical species.
Another object of the invention is to measure the attenuation of light in a certain mode travelling through an optical waveguide.
A further object of the invention is to provide a sensor capable of distinguishing between different chemical species.
A still further object of the invention is to provide an array of optical sensor elements made of the same or different materials for improving the identifiability of chemical specie

REFERENCES:
patent: 4270049 (1981-05-01), Tanaka et al.
patent: 4373768 (1983-02-01), Clark
patent: 5082629 (1992-01-01), Burgess et al.
patent: 5120131 (1992-06-01), Lukosz
patent: 5513913 (1996-05-01), Ball et al.
Reuter et al., "Monitoring Humidity by Polyimide Lightguides", Appl. Phys. Lett. 52(10): 778-779, 7 Mar. 1988.
Patent Abstracts of Japan 17(290): (P-1549) 3 Jun. 1993 & JP,A,05 019 123 (Asahi Seisakushiyo) 29 Jan. 1993.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical sensor for detection of chemical species does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical sensor for detection of chemical species, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical sensor for detection of chemical species will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2161815

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.