Optical sensor and optical method for characterizing a...

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing gas sample

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S082050, C422S082110, C436S805000, C436S164000, C436S167000, C436S171000

Reexamination Certificate

active

06455004

ABSTRACT:

The invention concerns an optical sensor and an optical process for the characterization of a chemical and/or bio-chemical substance.
Waveguide grating structures with and without a chemo-sensitive layer are described in the literature (refer to, e.g., EP 0 226 604 B1, EP 0 482 377 A2, PCT WO 95/03538, SPIE Vol. 1141, 192-200, PCT WO 97/09594, Advances in Biosensors 2 (1992), 261-289, U.S. Pat. No. 5,479,260, SPIE Vol. 2836, 221-234).
In EP 0 226 604 B1 and EP 0 482 377 A2, it is demonstrated, how the effective refractive index (resp., the coupling angle) of a chemo-sensitive grating coupler can be measured as a sensor signal. The sensor signal “effective refractive index” or “coupling angle” is a value which manifests a strong dependence on temperature.
Front-side in-coupling of light into a waveguide (refer to SPIE Vol. 1141, 192-200) is not practical, because a high positioning accuracy is required. In addition, the front side of the wave guide has to be of good optical quality. In PCT WO 95/03538 it is demonstrated how the absolute out-coupling angle of a mode is measured. This value, however, without referencing manifests a high dependence on temperature. In PCT WO 97/09594, chirped waveguide gratings are presented, which, however, also manifest a dependence on temperature.
In Advances in Biosensors 2 (1992), 261-289 it is shown how the disturbing “pore diffusion” can be referenced away with the three-layer waveguide model. The refractive index of the waveguiding film manifests drift, while the layer thickness of the waveguiding film (=sensor signal) remains stable. The layout is designed with movable mechanics, which does not permit rapid measurements. In addition, the sensor signal or the light emerging from the waveguide grating structure is recorded from the front side. Front side detection is unsuitable for a two-dimensional layout of waveguide grating structure units. Furthermore, the effective refractive indexes N(TE) and N(TM) for the two polarizations TE and TM are not simultaneously recorded, because for the recording of resonance coupling curves separated by angle a mechanical angular scan is carried out.
In U.S. Pat. No. 5,479,260, a bi-diffractive or multi-diffractive grating coupler is described, whereby the sensor signal is produced by the interferometry of two out-coupling beams of the same or of differing polarization (with the use of a polarizer). Interferometric measurements are complicated, because the intensities of the two beams have to be matched to one another. In addition, temperature fluctuations due to the interferometric signal generated by differing polarizations (using a polarizer) are only partially compensated.
In SPIE Vol. 2836, 221-234, a layout for a waveguide grating structure in connection with fluorescence- or luminescence measurements is described. This layout, however, is not suitable for an (if necessary simultaneous) (absolute) temperature-compensated measurement on the basis of a direct detection. In addition, the waveguide grating structure is mounted on a revolving table.
In Applied Optics 20 (1981), 2280-2283, a temperature-independent optical waveguide is reported about, whereby the substrate is made of silicon. Silicon is absorbent in the visual spectral range. In the case of chemo-sensitive waveguide grating structures, however, the in-coupling takes place in preference from the substrate side. In Applied Optics 20 (1981), 2280-2283, in addition grating couplers which are not temperature-independent are dealt with.
The invention presented here has the object of creating a (bio-)chemo-sensitive optical sensor and to indicate an optical process for the characterization of a (bio-)chemical substance, which do not have the above disadvantages. With the invention, in particular:
(1) sensor signals can be generated, which manifest a low dependence on temperature and/or a low dependence on the diffusion of the specimen liquid into the micropores of a waveguiding film;
(2) both the measurement of (absolute) sensor signals with respect to a direct detection (absolute out-coupling angles &agr;(TE) and &agr;(TM) for the TE- or TM-wave, effective refractive indexes N(TE) and N(TM) for the TE- or TM-wave, layer thickness t
F
of the waveguiding film etc.) as well as the measurement of (absolute) sensor signals with respect to a marking detection (referenced fluorescence-, luminescence-, phosphorescence signals, etc.), are possible; and
(3) sensor signals remain stable with respect to a slight tilting and/or displacement of the waveguide grating structure, because (local and angular) differences of sensor signals or referenced sensor signals are measured. The object is achieved by the invention as it is defined in the independent claims.
The optical sensor according to the invention contains at least one optical waveguide with a substrate, waveguiding material, a cover medium and at least one waveguide grating structure, at least one light source, by means of which light can be emitted from the substrate side and/or from the cover medium side onto at least a part of the waveguide grating structure, and means for the detection of at least two differing light proportions, whereby with at least one detection agent light emitted into the substrate and/or cover medium can be detected, whereby for the carrying out of a measurement the waveguide can be fixed immovably with respect to the at least one light source and the means of detection.
In the case of the optical process according to the invention for the characterization of a chemical and/or bio-chemical substance in a specimen by means of an optical waveguide containing at least one waveguide grating structure, the specimen is brought into contact with the waveguide in at least one contact zone, in the waveguide in the region of the at least one contact zone at least one light wave is excited through the waveguide grating structure, the at least one light wave is brought into interaction with the specimen, light in at least two differing proportions is detected, of which at least one proportion originates from the region of the contact zone, and at least one absolute measuring signal is generated by the evaluation of the detected light.
The waveguide grating structure consists of one or several waveguide grating structure units, which are arranged one-dimensionally or two-dimensionally (e.g., in a matrix shape or circular shape).
A possible xy-displacement (or only an x-displacement) of the reading head (the reading heads) from one waveguide grating structure to the other or a possible xy-displacement (or only x-displacement) of the waveguide grating structure can quite well be applied.
A waveguide grating structure unit consists of at least two “sensing pads” (sensor platforms, sensor paths), which differ from one another in at least one of the following characteristics:
(a) The light waves guided in the “sensing pads” differ in their polarization (TE-wave or TM-wave), whereby the generated sensor signal is not produced by interferometric measurement.
(b) The light waves guided in the “sensing pads” differ in their mode number.
(c) The two chemo-sensitive layers assigned to the “sensing pads” manifest a differing specificity (ligand
1
selectively binds (inside or on the surface) to the chemo-sensitive layer covering the “sensing pad 1”; ligand
2
selectively binds (inside or on the surface) to the chemo-sensitive layer covering the “sensing pad 2”).
(d) The chemo-sensitive layer assigned to the first “sensing pad” manifests specificity for one ligand (with or without “non-specific binding”), while the (chemo-sensitive) layer assigned to the second “sensing pad” manifests no specificity (with or without “non-specific binding”) (example: Dextran layer, to which no identification molecule (e.g., an antibody) is bound).
(e) The light waves guided in the “sensing pads” differ in their wavelength.
A “sensing pad”, in which guided light waves of differing polriztion (TE-wave or TM-wave) are excited, counts as two “sensing pads” (difference in the polarization!), providing the se

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical sensor and optical method for characterizing a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical sensor and optical method for characterizing a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical sensor and optical method for characterizing a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2819813

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.