Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction
Reexamination Certificate
2004-05-12
2004-11-02
Ngô, Ngân V. (Department: 2814)
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Heterojunction
C257S021000, C257S023000, C257S013000
Reexamination Certificate
active
06812483
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an optical semiconductor device utilizing intersubband optical transitions to achieve a high-efficient wide-band light-emitting or receiving device and an optical switch or moderator for ultrafast optical controls.
BACKGROUND ART
An optical semiconductor device based on intersubband transitions in a quantum well structure is regarded as one of noteworthy devices operable in the range of a near-infrared band to a terahertz band, for the reason that it has high probability of inducing optical transitions between subbands and high potential of structurally controlling the transition wavelength in a wide rage.
For example, Japanese Patent Laid-Open Publication No. H08-179387; discloses an optical switch having a quantum well structure comprising of a GaN well layer and an AlN barrier layer which are formed on a single-crystal (compound superconductor or sapphire) substrate, wherein the band-edge energy E
EDGE
of the GaN well layer is two times or more greater than the energy E
OP
corresponding to the subband energy spacing in the GaN well layer at the operating wavelength of the optical switch.
Japanese Patent No. 2991707 discloses a coupled quantum well structure formed on a single-crystal substrate such as indium-phosphorus (InP). The coupled quantum well structure comprises a pair of first quantum well layers having the same width, a second quantum well layer having a width different from that of the first quantum well layer, and a quantum barrier layer having a width less than those of the first and second quantum well layers, wherein the second quantum well layer is disposed between the first quantum well layers, and the quantum barrier layer is disposed between the first and second quantum well layers. Each of the first and second layers is made of InGaAs, and the quantum barrier layer is made of AlAs, AlGaAs, AlAsSb or AlGaAsSb. The energy spacing between all of subbands in a conduction bend of the coupled quantum well structure is 36 meV or more.
The “Transaction of the Institute of Electronics, Information and Communication Engineering, Japan” (Suguru Asano, Susumu Noda “Ultrafast Optically Controlled Modulation Using Intersubband Transition”, '99/6, Vol. J82-C-1, No. 6, pp 291-300) also discloses a device using midinfrared intersubband transitions in a GaAs/AlGaAs quantum well formed on a GaAs substrate, and its potential for achieving an ultrafast optically controlled modulation of a half bandwidth of about 1 ps with a low energy of about 1 pJ/pulse.
This article also reports that, in the GaAs/AlGaAs quantum well on the GaAs substrate, In can be added into its quantum well layer to provide a narrowed forbidden bandwidth therein, and the Al composition of its barrier layer can be increased to provide a widened forbidden bandwidth therein, so as to form an InGaAs/AlAs quantum well structure having a well depth of 1.1 eV or more, which is significantly enlarged, as compared to about 0.3 eV in a conventional GaAs/Al
0.3
Ga
0.7
As, to achieve the shorter intersubband transition wavelength, specifically a near-infrared wavelength of 1.9 &mgr;m.
DISCLOSURE OF THE INVENTION
The conventional optical semiconductor device based on intersubband transitions has a restriction in application to a particular device, such as a display, because its element has been primarily formed on an opaque substrate such as GaAs or InP. In addition, the intersubband transitions at a shorter wavelength must be achieved by reducing the width of the well layer to the level of several atomic layers and producing a deep quantum well in energetic aspects. Particularly, an extremely deep well (1.5 eV or more) is essential to achieve the intersubband transition at a wavelength range of 1.55 &mgr;m or more, required for optical communications.
In view of the above circumstances, it is an object of the present invention to provide an optical semiconductor device utilizing intersubband optical transitions in quantum wells, capable of using a transparent substrate as its substrate and achieving a high-efficient wide-band light-emitting or receiving device and an ultrafast optical modulation or switching applicable to an optical communication system requiring one tera-bit/sec or more of data transmission speed.
In order to achieve the above object, the present invention is directed to use a ZnO heterostructure formed on a transparent substrate so as to achieve (a) a high-efficient wide-band light emitting or receiving device utilizing optical transitions between subbands in the ZnO heterostructure and (b) an ultrafast optically controllable optical modulator or switch utilizing optical transitions between subbands in the ZnO heterostructure.
Specifically, the present invention provides an optical semiconductor device which including a transparent substrate and an optical semiconductor element formed on the substrate, wherein the element and the substrate are transparent in their entirety in a visible light range. The element having a quantum well structure comprising: a quantum well made of a zinc oxide or a zinc oxide mixed crystal thin film, the quantum well having a width of 2.5 nm or less: and a barrier layer made of an insulating material selected from the group consisting of SiOx: SiNx; ZnMgO; a homologous compound expressed by the following general formula: RMO
3
(AO)m, wherein R=Sc, Fe or In, M=In, Fe, Cr, Ga or Al, A=Zn, Mg, Cu, Mn, Fe, Co, Ni or Cd, and m=a natural number: and (Li, Na)(Ga, Al)O
2
. In the optical semiconductor device, the element is formed as a ZnO superlattice structure, and the optical semiconductor device is adapted to utilize intersubband optical transitions of subbands belonging to the same band in the quantum well structure so as to emit and receive light through the ZnO superlattice structure, or to receive light through an effect of intersubband light absorption, or to switch light optically controllably through an effect of intersubband absorption saturation.
Further, the present invention provides a semiconductor light-emitting or receiving device comprising the above optical semiconductor device, wherein the quantum well structure and the ZnO superlattice structure are formed as one or multilayered heterostructure. This The light-emitting or receiving device is adapted to utilize intersubband optical transitions of subbands belonging to the same band in the quantum well structure to be caused by a carrier introduced from a miniband in the ZnO superlattice structure into the subbands in the adjacent quantum well made of the zinc oxide or the zinc oxide mixed crystal thin film.
The present invention further provides a semiconductor optical switch or modulator comprising the above optical semiconductor device. In the optical switch or modulator, a control light is arranged to be a light corresponding to one of intersubband transition energies in a conduction band of the quantum well structure, and a signal light is arranged to be a light corresponding to the same intersubband transition energy as that of the control light, or a light corresponding to another intersubband transition energy in the conduction band of the quantum well structure.
The present invention further provides a semiconductor optical switch or modulator comprising the above optical semiconductor device. In the optical switch or modulator, a control light is arranged to be a light corresponding to one of intersubband transition energies in a valence band of the quantum well structure, and a signal light is arranged to be a light corresponding to the same intersubband transition energy as that of the control light, or a light corresponding to another intersubband transition energy in the valence band of the quantum well structure.
The present invention further provides a semiconductor optical switch or modulator comprising the above optical semiconductor device. In the optical switch or modulator, a control light is arranged to be a light corresponding to one of intersubband transition energies in a conduction band of t
Kawasaki Masashi
Ohno Hideo
Ohtani Keita
Japan Science and Technology Agency
Ngo Ngan V.
Westerman Hattori Daniels & Adrian LLP
LandOfFree
Optical semiconductor element utilizing optical transition... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical semiconductor element utilizing optical transition..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical semiconductor element utilizing optical transition... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3363862