Optical scanner with hand-held and hands-free modes of use

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S462430, C235S462470, C235S462460, C235S462480, C235S472010, C235S472020

Reexamination Certificate

active

06216951

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to optical scanners, and particularly although not exclusively to scanners for reading bar code symbols. The invention further relates, in its various aspects, to a hand-held scanner of modified spherical or ovoid shape, and to a system for linking a wireless scanner to a particular scanner cradle.
2. Description of Related Art
Various optical readers and optical scanning systems have been developed heretofore for reading indicia such as bar code symbols appearing on a label or on the surface of an article. The bar code symbol itself is a coded pattern of indicia comprised of a series of bars of various widths spaced apart from one another to bound spaces of various widths, the bars and spaces having different light reflecting characteristics. The readers in scanning systems electro-optically transform the graphic indicia into electrical signals, which are decoded into alphanumeric characters that are intended to be descriptive of the article or some characteristic thereof. Such characteristics are typically represented in digital form and untilized as an input to a data processing system for applications in point-of-sale processing, inventory control and the like. Scanning systems of this general type have been disclosed for example, in U.S. Pat. Nos. 4,251,798; 4,369,361; 4,387,297; 4,409,470; 4,760,428; 4,896,026; 5,015,833; 5,262,627; and 5,504,316 all of which have been assigned to the same assignee as the instant application and each of which are hereby incorporated by reference. As disclosed in some of the above patents, one embodiment of such a scanning system resides, inter alia, in a hand held, portable laser scanning device supported by a user, which is configured to allow the user to aim the scanning head of the device, and more particularly, a light beam, at a targeted symbol to be read.
The light source in a laser scanner bar code reader is typically a semiconductor laser. The use of semiconductor devices as the light source is especially desirable because of their small size, low cost and low voltage requirements. The laser beam is optically modified, typically by an optical assembly, to form a beam spot of a certain size at the target distance. It is preferred that the cross section of the beam spot of the target distance be approximately the same as the minimum width between regions of different light reflectivity, i.e., the bars and spaces of the symbol. At least one bar code reader has been proposed with two light sources to produce two light beams of different frequency.
The laser beam may be moved by optical or opto-mechanical means to produce a scanning light beam U.S. Pat. No. 5,144,120 to Krichever et al. employs laser, optical and sensor components mounted on a drive for repetitive reciprocating motion either about an axis or in plane to effect scanning.
Another type of bar code scanner employs electronic means for causing the light beam to scan a bar code symbol, rather than using a mechanical activation. A linear array of light sources activated one at a time in a regular sequence may be imaged upon the bar code symbol to simulate a scanned beam. Instead of a single linear array of light sources, a multiple-line array may be employed, producing multiple scan lines. Such type of scanner is disclosed in U.S. Pat. No. 5,258,605 to Metlitzky et al.
Typically, the semiconductor lasers used in such bar code scanners is an edge-emitting injection laser in which the laser beam is emitted from the p-n junction region on a polished end face of the device. By their physical nature, these known edge-emitting injection lasers emit a beam from a thin region at the p-n junction. A laser beam emanating from a thin source has a large beam divergence which makes focusing difficult and results in a wide range of variability in performance from laser to laser.
A more recently developed form of semiconductor laser is the vertical-cavity surface-emitting laser diode (VCSEL), such as described in “Efficient Room-Temperature Continuous-Wave AlGaInP/AlGaAs Visible (670 nm) Vertical-Cavity Surface Emitting Laser Diodes” by R P Schneider et al. published in IEEE Photonics Technology Letters, Vol. 6, No. 3, March 1994. Reference is also made to U.S. Pat. Nos. 5,283,447; 5,285,455; 5,266,794; 5,319,496; and 5,326,386, which are hereby incorporated by reference, for background information.
The VCSEL has a substantial surface area from which the laser beam is emitted; this area may be patterned. Thus, the beam produced is less divergent in one dimension than with known edge-emitting type semiconductor laser diodes. The output beam is round, and is virtually not astigmatic. Furthermore, VCSELs typically operate at significantly lower currents than edge-emitting laser diodes. Therefore, it also generates less heat.
In the laser beam scanning system known in the art, a single laser light beam is directed by a lens or other optical components along the light path toward a target that includes a bar code symbol on the surface. The moving-beam scanner operates by repetitively scanning the light beam in a line or series of lines across the symbol by means of motion or a scanning component, such as the light source itself or a mirror disposed in the path of the light beam. The scanning component may either sweep the beam spot across the symbol and trace a scan line across the pattern of the symbol, or scan the field of view of the scanner, or do both.
Bar code reading systems also include a sensor or photodetector which detects light reflected or scattered from the symbol. The photodetector or sensor is positioned in the scanner in an optical path so that it has a field of view which ensures the capture of a portion of the light which is reflected or scattered off the symbol, detected, and converted into an electrical signal.
In retroreflective light collection, a single optical component e.g., a rotating mirror, such as described in Krichever et al. U.S. Pat. No. 4,816,661 or Shepard et al. U.S. Pat. No. 4,409,470, both herein incorporated by reference, scans the beam across a target surface and directs the collected light to a detector. The rotating mirror usually is relatively large to receive the incoming light, and only a small detector is required since the rotating mirror can focus the light on to a small field of view, which increases signal-to-noise ratio.
In non-retroreflective light collection, the reflected laser light is not collected by the same optical component used for scanning. Instead, the detector is independent of the scanning beam, and is typically constructed to have a large field of view so that the reflected laser light traces across the surface of the detector. Because the scanning optical component, such as a rotating mirror, need only handle the outgoing light beam, it can be made much smaller. On the other hand, the detector must be relatively large in order to receive the incoming light beam from all locations in the scanned field.
Electronic circuitry and software decode the electrical signal into a digital representation of the data represented by the symbol that has been scanned. For example, the analog electrical signal generated by the photodetector is converted by a digitizer into a pulse or modulated digitized signal, with the widths corresponding to the physical widths of the bars and spaces. Such a digitized signal is then decoded, based on the specific symbology used by the symbol, into a binary representation of the data encoded in the symbol, and subsequently to the alpha numeric characters so represented.
The bar code symbols are formed from bars or elements typically rectangular in shape with a variety of possible widths. The specific arrangement of elements defines the character represented according to a set of rules and definitions specified by the code or “symbology” used. The relative size of the bars and spaces is determined by the type of coding used as is the actual size of the bars and spaces. The number of characters (represented by the bar code symb

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical scanner with hand-held and hands-free modes of use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical scanner with hand-held and hands-free modes of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical scanner with hand-held and hands-free modes of use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2441858

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.