Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
2000-08-04
2002-02-05
Jankus, Almis R. (Department: 2674)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S156000, C359S199200, C359S199200, C359S199200
Reexamination Certificate
active
06344846
ABSTRACT:
BACKGROUND OF THE INVENTION
In recent years in the development of computer technology, the alphanumeric keyboard has been augmented by input devices which are used to position the cursor on a monitor screen for selecting icons by the operation of a switch. The most common such input device is the mouse. Hardly a personal computer today is found without a mouse or other pointing device which allows the mouse or pointing device to control certain functions of the computer.
Anyone who has driven at night and noticed the bright reflection of the eyes of a distant animal in an otherwise dark visual field, has experienced the effectiveness of retroreflection. Retroreflection is the return of light, by an object or material, nominally back to the source.
The mouse, being a hand operated device used on the horizontal work surface near the keyboard and monitor, must be connected by a cable, which unfortunately, limits the range of the movement of the mouse. The cable, which supplies operating power to the mouse, also receives signals from the mouse about its position and user commands.
The mouse typically includes a ball, which rolls on a surface or mouse pad. The ball is coupled to optical chopper wheels within the mouse housing which respond to movement of the mouse to produce pulses of light representing mouse movement. This is all well-known conventional mouse technology.
Inside the mouse, electrical power, is converted to light by four light emitting diodes (LED's), two each at two orthoginally-oriented chopper wheels. As the mouse is moved on a surface, the chopper wheels rotate in correspondence with the lateral or longitudinal components of motion of the mouse. Light is intermittently blocked by spokes of the chopper wheels, or projected through the holes in the chopper wheels, where it is detected by the photo detectors within the mouse and converted back to electrical signals representing mouse movement. Command signals are usually in the form of switch operations by the user. Mice heretofore have been electro/optical/mechanical devices.
It would be highly desirable to provide a mouse or other pointing device which performed the same functions but without a cable connection to the computer. Several attempts have been made to accomplish this objective but none have met wide success.
Some cordless mice have been developed which communicate with the computer with an infrared or radio signal generated in the mouse, similar to appliance remote controls; however, all have also been electro/optical/mechanical devices, in which internal batteries provide an electrical charge for a limited time before they must be recharged, interrupting use of the computer and inconveniencing the user. Further, batteries add weight to the mouse and increase the mass and inertia, causing fatigue to the computer user. While cordless mice eliminate the inconvenience and restrictions of a cord, they nevertheless are heavier, more complicated and more expensive than corded mice.
There also exists a continuing need for improved low cost optical systems which use a minimum of refractive elements, e.g., lenses or prisms. In connection with meeting the need of a low cost cordless purely reflective computer mouse, it is also an objective of this invention to produce a general purpose optical system with a mouse or pointing device or remote controller which is totally devoid of any internal power source such as a battery or poser supply lead wire and further free of any electronic components in the mouse, pointing device or remote controller.
The capability of this concept as described hereinafter, also serves to fill the continuing need for remote controllers for television sets VCR's audio systems and the like. By incorporating the invention described herein, the need to provide and replace batteries is forever eliminated. Likewise all electronic or electrical components and electro mechanical elements are eliminated from the remote controller.
BRIEF DESCRIPTION OF THE INVENTION
The subject of this invention is an optically retroreflective non-electrical mouse or pointing device which contains only a housing, the mouse ball, its rollers, and simple passive optical elements so that the only input to the mouse is light or an optical beam from the computer which the mouse intermittently reflects back to the computer where it is detected. The mobility of the mouse is limited only to an unobstructed line-of-sight path between the mouse and the light source typically in the base of the desktop or notebook computer. In principle, this invention is an optically retroreflective mouse.
The mouse of this invention contains standard light chopper wheels plus simple optical elements such as mirrors, retroreflectors, beamsplitters, filters, prisms, diffraction gratings, or lenses, some of which may be inexpensively molded into the mouse. Necessary mouse button operations may be accomplished by a simple shutter which permits a momentary flash of light to indicate actuation.
An object of this invention is a cordless opto/mechanical retroreflective computer mouse which does not contain any electronics or power sources.
Typically, optical instruments require precise alignment between all optical elements for proper operation. The cordless mouse and mouse controller of this invention, constitute both ends of an optical system for which it would seem that precise alignment of the mouse, relative to the computer, would be required in order to receive a return signal at the computer.
To solve this problem retroreflectors, rather than simple mirrors, are used in the mouse at the chopper wheels and mouse-button, because retroreflectors return light, nominally to the source, within a wide cone angle.
The send-receive optics on the mice and computers of this invention share the property of receiving and radiating light over a wide fan-shaped horizontal angle in the same space between the computer and mouse, but reducing the horizontal spread to essentially a collimated pencil beam within the computer and mouse which can be used by the prism, diffraction grating, etc. The angular position of this collimated white-light beam is shown in mice in the average, on-axis position as if coming from the mid-position relative to the mouse send-receive optics.
When the incident optical beam reaches the mouse off axis, the white-light beam which emerges out of the wide-angle send-receive optics in the mouse slightly angularly misaligned, although the angular misalignment is greatly reduced due to the nature of the wide-angle optics. Nevertheless, the amount that the optical paths in the mice are angularly shifted, is related to the horizontal magnification ratio of the relative to the computer.
The white light, after being spectrally separated in the mouse, varies its angular path, in the horizontal plane, and its incident angle on the retroreflectors at the button shutter and chopper wheels. The incident angle of light at the retroreflective is not predictable as being perpendicular to the retroreflector. Therefore, first surface mirrors are a poor choice to be used. Retroreflectors can retroreflect light over a fairly wide angle and can easily handle the modest incident angles used in the optical mice. By way of contrast, retroreflectors can easily reflect light within the modest incident angle and return that light along its incident path, out of the wide-angle optics of the mouse, which increase the angle to match the outside incident angle, and back to the computer.
One embodiment of this invention includes means for receiving broad-spectrum light from a source typically in the base of the computer or possibly a separate cabled mouse controller housing. Within the mouse, the received light is separated into multiple discrete wavelengths, or colors, and directed optically with mirrors at necessary positions, two each at two chopper wheels. The light is modulated, i.e., intermittently blocked or projected through holes in the chopper wheels, where it is retroreflected back through the optical system, out of the mouse and back to the
Jankus Almis R.
Tran Henry N.
Wagner John E.
LandOfFree
Optical retroreflective remote control does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical retroreflective remote control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical retroreflective remote control will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2945490