Optical probe with light fluctuation protection

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S473000, C600S476000, C600S425000, C388S931000, C388S931000

Reexamination Certificate

active

06647285

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Endeavor
The present invention relates to tissue recognition and more particularly to a probe system for tissue recognition.
2. State of Technology
A New Release dated Jan. 10, 2001 by the Lawrence Livermore National Laboratory operated by the University of California provides the following information, “The pain and anxiety women experience undergoing breast cancer tests and awaiting the results may soon be lessened thanks to a new, minimally invasive diagnostic tool that can instantly detect cancerous tissue. Lawrence Livermore National Laboratory has partnered with San Jose-based BioLuminate, Inc. to develop “Smart Probe,” a tool for earlier, more accurate breast cancer detection that removes no tissue and is expected to achieve accuracy levels comparable to surgical biopsies in detecting cancerous cells.
The BioLuminate “Smart Probe,” smaller than the needle used in routine blood tests, is inserted into breast tissue after an initial screening indicates an area of concern. The probe looks for multiple known indicators of breast cancer, instantaneously providing physicians with information they can use to determine whether more invasive and costly tests are necessary. The results of the “Smart Probe” procedure are immediately available to patients, helping relieve anxiety. First human studies using the device are expected to begin this spring at sites to be selected in Northern California. “Physicians have been seeking a way to acquire more specific information about a suspected cancer site before performing a biopsy or surgery,” said Neil Gorrin, MD, Assistant Chief of Surgery at Kaiser Permanente Medical Center in South San Francisco. “The “Smart Probe” not only is less invasive, but it provides several specific measurements of known cancer indicators in real time, which will improve our chances of making the right diagnosis and treatment plan for the patient.”
Fewer Unnecessary Biopsies—Breast cancer is the second leading cause of death among women in the United States. Last year in the U.S., 182,800 women were diagnosed with breast cancer and more than 40,800 died of the disease. In the U.S. each week, approximately 16,000 women undergo unnecessary, surgical breast biopsies on suspicious tissue that turns out benign. In addition, physicians miss about 4,600 cases of breast cancer each week during physical examinations and mammogram reviews. “By using the BioLuminate ‘Smart Probe’ before biopsies are performed on suspicious lesions, many unnecessary surgeries can be eliminated,” said Richard Hular, President and CEO of BioLuminate. “Not only is this a great benefit for the patient, it also has the potential to save the U.S. healthcare system over $2 billion annually.”
Cancer Indicators Measured in Real Time—Once a mammogram or physical exam has detected a possible malignant lump, “Smart Probe” is inserted into the tissue and guided to the suspicious region. Sensors on the tip of the probe measure optical, electrical and chemical properties that are known to differ between healthy and cancerous tissues. The “Smart Probe” can detect multiple (5 to 7) known indicators of breast cancer. Tissue measurements are made in real time in both normal and suspect tissue. “Smart Probe's” sensors begin gathering information the moment the probe is inserted into tissue. Computer software compares the real-time measurements to a set of known, archived parameters that indicate the presence or absence of cancer. The results are displayed instantly on a computer screen. “The key technology and experience that Lawrence Livermore Lab has to offer will allow the ‘Smart Probe’ to be much smaller than first conceived, and acquire data more accurately,” said Luiz Da Silva, Ph.D, Livermore's Associate Medical Technology Program Leader and primary investigator for the “Smart Probe.” “In addition, we will have the capacity to add additional measurements if necessary.”
U.S. Pat. No. 5,303,026 for apparatus and method for spectroscopic analysis of scattering media by Karlheinz Strobl, Irving J. Bigio, and Thomas R. Loree, patented Apr. 12, 1994 provides the following background information, “Attempts at in situ real-time diagnostics for complex biological media, have been only marginally successful because of limitations in the spectroscopic techniques that are applicable. Conventional fluorescence spectroscopy is generally unable to resolve differences among similar biological tissue samples (or subtle differences in a given tissue sample) and has generally not proven reliable in detecting malignancy except with the aid of drugs such as hematoporphyrin derivatives which are used as targeting fluorescers.”
U.S. Pat. No. 5,349,954 for a tumor tissue characterization apparatus and method by Jerome J. Tiemann and Fay A. Marks, patented Sep. 27, 1994 provides the following background information, “In a conventional procedure, a radiologist performs x-ray mammography. If an abnormal breast process recorded on the resulting mammograms is considered suspicious, a surgical biopsy can be ordered. Immediately prior to the biopsy, the radiologist takes several more views or projections of the breast during preoperative localization of the abnormality and marks the location of the suspicious abnormality by impaling the region with a thin, hooked guide wire. The patient is then taken to an operating room and a surgeon performing the biopsy follows the hooked wire guide to the precise location of the suspected abnormality. The most common form of biopsy involves surgically removing the suspected region. One of the less invasive forms of biopsy, stereotactic fine needle aspiration biopsy, aspirates a small amount of cells for cytologic analysis. The advantages of this technique are that it is minimally invasive, is accurate to less than 2 mm in lesion localization, has sensitivity greater than 90%, and is less expensive than surgical biopsies. But since small (22 gauge) needles are used, cytology on the small amount of material removed is not easy. Far more accurate is large-core needle biopsy (using stereotactic positioning or ultrasound guidance), another alternative to surgical biopsy. Core biopsies remove a 1 mm.times.17 mm core of tissue (if a 14 gauge needle is used) for standard histological examination. However, benign histological diagnoses are difficult to make. In fact, for both fine needle aspiration biopsy and core biopsy, the techniques are only useful when they return a positive result for malignancy. In all other cases, the suspicious lesion must undergo incisional or excisional surgical biopsy. False negatives in analyzing an x-ray mammogram occur when benign tumors or “normal” breast tissue with radiological densities similar to cancer completely or partially mask a malignant tumor which does not exhibit primary or secondary mammographic signs of carcinema. False positives are also problematic because they reduce the acceptability of mammography by the general public and lead to unnecessary biopsies.”
U.S. Pat. No. 5,800,350 for an apparatus for tissue type recognition by Coppleson et al, patented Sep. 1, 1998, provides the following background information, “The early detection of tissues displaying pre-cancer or cancer modifications is important for successful medical treatment. Presently-used detection techniques suffer from inaccuracy and are subject to operator error as well as being time-consuming. A good example of this is the Pap smear for cervical cancer. X-ray diagnosis, which can also be used for detecting advanced cancer modifications, can lead to detrimental exposure to radiation. A positive result produced by a Pap smear test is generally followed by a visual examination using a colposcope which provides a magnified view of the cervix. Suspect regions of the cervix are evaluated by a skilled practitioner who then makes a subjective judgement of the tissue observed. There are many tissue types in the cervix, some of which display analogous appearances, including visual and textural characteristics, that make clinical diagnosis very diff

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical probe with light fluctuation protection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical probe with light fluctuation protection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical probe with light fluctuation protection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3166067

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.