Optics: measuring and testing – By polarized light examination
Reexamination Certificate
1999-11-10
2003-08-26
Nguyen, Tu T. (Department: 2877)
Optics: measuring and testing
By polarized light examination
Reexamination Certificate
active
06611329
ABSTRACT:
CLAIM OF BENEFIT OF PROVISIONAL APPLICATION
Pursuant to 35 U.S.C. Section 119, the benefit of priority from provisional application 60/082,355, with a filing date of Apr. 20, 1998, is claimed for this non-provisional application.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to substance detection using optical systems. More specifically, the invention is a method for detecting the presence and/or concentration of a substance in a sample path using polarization-modulated optical path switching and the principles of differential absorption radiometry.
2. Description of the Related Art
Gas filter correlation radiometers (GFCRs) infer the concentration of a gas species along some sample path either external or internal to the GFCR. In many GFCRs, gas sensing is accomplished by viewing alternately through two optical cells the emission/absorption of the gas molecules along the sample path. These two optical cells are called the correlation and vacuum cells. The correlation cell contains a high optical depth of gas species i that strongly absorbs radiation at specific molecular transition wavelengths of the particular gas while passing all other wavelengths. In effect, the correlation cell defines a plurality of spectral notches (i.e., strong attenuation) coincident with the band structure of gas species i. The vacuum cell generally encloses a vacuum or a gas or gas mixture exhibiting negligible or no optical depth, e.g., nitrogen, an inert gas, or even clean dry air. An optical filter (e.g., interference filter) placed in front of the instrument or in front of the detector limits the spectral information to a region coinciding with an absorption band of the gas of interest. The difference in signal strength between these two views of the emitting/absorbing gas species i can be related to the concentration of this gas along the sample path.
A known GFCR for measuring concentration of a single gas is disclosed in U.S. Pat. No. 5,128,797, issued to Sachse et al. and assigned to the National Aeronautics and Space Administration (NASA), the specification of which is hereby incorporated by reference. The GFCR includes a non-mechanical optical path switch that comprises a polarizer, polarization modulator and a polarization beamsplitter. The polarizer polarizes light (that has crossed a sample path after originating from a light source) into a single, e.g., vertically polarized, component which is then rapidly modulated into alternate vertically and horizontally polarized components by a polarization modulator. The polarization modulator may be used in conjunction with an optical waveplate. The polarization modulated beam is then incident on a polarization beamsplitter which transmits light of one component, e.g., horizontally polarized, and reflects light of a perpendicular component, e.g., vertically polarized. The transmitted horizontally polarized beam is reflected by a mirror, passes through a gas correlation cell and on to a beam combiner. The reflected vertically polarized beam passes through a vacuum cell, is reflected by a mirror and is passed on to the beam combiner. The beam combiner recombines the horizontal and vertical components into a single beam which passes through an optical interference filter that limits the spectral content of the incoming radiation to an absorption band of the gas species of interest. The single beam is then incident on a conventional detector. However, this system is limited in that it can only measure a single gas concentration.
A GFCR for measuring multiple gases based on the same optical path switching technique is disclosed in U.S. patent application Ser. No. 09/019,473, filed Feb. 5, 1998, now U.S. Pat. No. 6,008,928, by Sachse et al. and assigned to the National Aeronautics and Space Administration (NASA). In this system each optical path contains one or more cells with each cell having spectral features of one or more gases of interest. The two optical paths are then intersected to form a combined polarization modulated beam which contains the two orthogonal components in alternate order. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components in each partitioned spectral region of interest is then determined as an indication of the spectral emission/absorption of the light beam along the sample path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the sample path.
Both of the afore-described systems require the use of gas correlation cells. However, there are instances where gas correlation cells are not practical. For example, some gases are too dangerous and/or require a gas correlation cell construction that is too expensive for a particular application. Further, some gases such as ozone are too reactive to contain in a gas cell. Still further, it may also be desirable to detect/measure a broad category of gases, e.g., hydrocarbons. However, to accomplish this with a GFCR system, many gases would have to be contained within one cell or the beam would have to be passed through multiple gas cells. This complicates construction and adds to overall system expense. Still further, gas correlation cells are not useful for measuring spectral absorption characteristics of solids or liquids because these substances have broad absorption features.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to detect/measure any type of substances (i.e., gas, liquid or solid) in a non-mechanical optical fashion without the need for gas correlation cells.
Another object of the present invention is to provide a method and system for detecting/measuring broad categories of gases using optical path switching techniques.
Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.
In accordance with the present invention, a system and method are provided for detecting one or more substances. An optical path switch receives radiation passing along a measurement or sample path of interest. The switch divides the radiation into a time series of alternating first polarized components and second polarized components that are orthogonal to the first polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train disposed in the first optical path filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train disposed in the second optical path filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner disposed to receive the first and second filtered radiation combines same to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
REFERENCES:
patent: 4489239 (1984-12-01), Grant et al.
patent: 4507558 (1985-03-01), Bonne
patent: 4567366 (1986-01-01), Shinohara
patent: 4841149 (1989-06-01), Martin et al.
patent: 4924095 (1990-05-01), Swanson, Jr. et al.
patent: 4963742 (1990-10-01), Abernathy
patent: 4999498 (1991-03-01), Hunt et al.
patent: 5076699 (1991-12-01), Ryan et al.
patent: 5117676 (1992-06-01), Chang
patent: 5128797 (1992-07-01), Sachse et al.
patent: 5210702 (1993-05-01), Bishop et al.
patent: 5252828 (1993-10-01), Kert et al.
patent: 5306913 (1994-04-01),
Hammerle Kurt G.
Nguyen Tu T.
The United States of America as represented by the Administrator
LandOfFree
Optical path switching based differential absorption... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical path switching based differential absorption..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical path switching based differential absorption... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3109215