Optics: measuring and testing – For light transmission or absorption – Of fluent material
Reexamination Certificate
2001-12-28
2004-12-21
Pham, Hoa Q. (Department: 2877)
Optics: measuring and testing
For light transmission or absorption
Of fluent material
C356S438000, C250S338500, C250S339130
Reexamination Certificate
active
06833922
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to remote sensing systems. More particularly, the present invention relates to an apparatus for transmitting, reflecting, and detecting light in an open path sensing system such as a vehicle emission sensing system, having use in detecting and/or measuring one or more components of the air through which the light passes.
BACKGROUND OF THE INVENTION
Current methods of determining whether a vehicle is compliant with emission standards include open path and closed path emissions measurement systems. In a closed path system, an emission sensor is directly connected to the exhaust of the vehicle, such as by insertion into a tailpipe. An open path vehicular emissions measurement system collects data by a means other than a direct connection to the tailpipe, such as a remote sensor that analyzes the individual components of emissions. Open path vehicle emission systems are often preferable to closed path systems because they can be used in numerous locations and do not require the vehicle to stop for testing.
Various open path emission sensing systems have been known. One such device uses a radiation source on one side of a roadway that projects a beam across the roadway to be received by a detector. The radiation source and the detector are located on opposite sides of the roadway. The radiation source emits light spectra that may be used to detect an emission signature by way of absorption of light, or which alternatively may be used to excite emission components so as to cause the components to emit light. The detected emission signature can then be used in various applications, such as the measurement of a vehicle's compliance with emission limits and the determination of the type of fuel that a vehicle is using.
A disadvantage of many known arrangements is that the radiation sources and detectors must be placed on opposite sides of the roadway from each other. Since both the detectors and radiation sources require power to operate, this means that a separate power supply must be provided on each side of the roadway.
Some known arrangements have tried to overcome this problem by using a radiation source on one side of a roadway and a reflective apparatus located on the other side of the roadway.
Accordingly, it is desirable to provide an improved optical transmission, reflection, and detection system as herein disclosed.
SUMMARY OF THE INVENTION
It is therefore a feature and advantage of the present invention to provide an improved optical transmission, reflection and detection system. In accordance with one embodiment of the present invention, a gas component analysis system includes a first light source capable of emitting a first beam of light having known emission intensities corresponding to one or more of infrared, visible, and ultraviolet spectra. The system also includes a reflection unit, a detection unit capable of receiving the beam and measuring received intensities corresponding to the plurality of light spectra, and a processor capable of comparing the received intensities and identifying a concentration of a component corresponding to the intensities.
Preferably, the system also includes a first reflector positioned to receive the beam from the first light source and reflect the beam toward the reflection unit. The reflection unit is positioned to receive the beam from the reflector and reflect the beam. Also preferably, a second reflector is positioned to direct the beam reflected by the refection unit so that the beam may be received by the detection unit. Each reflector preferably comprises an off-axis paraboloidal mirror.
Also preferably, the system also includes a filter wheel positioned to spin about an axis and receive the beam from the first light source and pass the beam to the reflection unit in pulses. The filter wheel preferably includes a plurality of filters, each of which substantially limits the passage of light to a predetermined spectral wavelength or range of wavelengths.
Also preferably, the first beam of light travels along an optical path to the reflection unit. In this embodiment, the system also includes a second light source capable of emitting a second beam of light having known emission intensities corresponding to one or more of infrared, visible, and ultraviolet spectra, as well as a beam splitter/combiner positioned to direct the second beam of light along substantially the same optical path to the reflection unit.
In an alternate embodiment, the system also includes a spinning reflector positioned to spin about an axis and receive the beam from the reflection unit and direct infrared components of the beam to the detection unit in pulses.
In accordance with another embodiment, a method of measuring concentrations of one or more components of a gas includes the steps of: (1) emitting at least one beam of light having known emission intensities corresponding to a plurality of infrared, visible, and ultraviolet spectra through the gas; (2) using a reflection unit to reflect the beam; (3) using a detection unit to receive the beam; (4) measuring received intensities in the beam corresponding to the plurality of light spectra; and (5) identifying a concentration of at least one component of the gas corresponding to a ratio of the emission intensities and the received intensities.
Preferably, the method embodiment also includes, either before or after the reflecting step, filtering the beam and passing the beam to the reflection unit in pulses. It may also include, before the detecting step, directing infrared, visible and ultraviolet components of the beam to different detectors and/or spectrometers in the detection unit. Also preferably, in the method embodiment identifying step is performed by a processing device that is programmed to perform the calculation of a component concentration using a formula corresponding to the Beer-Lambert law.
In another embodiment, the invention provides, an optical system for a gas component analysis. The system has a first emitter for emitting a first light beam having a first spectrum; a second emitter for emitting a second light beam at a second spectrum; a first receiver for receiving the first light beam; and a second receiver for receiving the second light beam. The first light beam travels along a first path in a first direction and the second light beam travels along a second path in a second direction and at least a portion of the first light path overlaps with at least a portion of the second light path to firm an overlapping beam, and at the overlapping beam the first direction is opposite to the second direction.
In another aspect, the invention provides an optical system for a gas component analysis, that has a first emitter located on a first side of a vehicle path for emitting a first light beam having a first spectrum across the vehicle path, a first receiver for receiving the first light beam, and a spinning filter wheel that filters the beam from the first emitter before the beam crosses the vehicle path.
In another aspect, the invention provides an optical system for a gas component analysis has a first emitter located on a first side of a vehicle path for emitting a first light beam having a first spectrum across the vehicle path, a first receiver for receiving the first light beam, a plurality of filter elements, and a spinning mirror face that reflects the beam so that the beam reaches each of the filter elements in sequence.
There have thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of con
DiDomenico John
Gentala Robert A.
Rendahl Craig S.
Baker & Hostetler LLP
Pham Hoa Q.
SPX Corporation
LandOfFree
Optical path structure for open path emissions sensing with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical path structure for open path emissions sensing with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical path structure for open path emissions sensing with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3333375