Optical multiplexer/demultiplexer and adjustment method thereof

Optical waveguides – With optical coupler – Plural

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S031000, C385S037000, C385S100000, C385S121000

Reexamination Certificate

active

06823106

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical multiplexer/demultiplexer for multiplexing or demultiplexing light with different wavelengths.
2. Related Background Art
An optical multiplexer/demultiplexer combines light signals with different wavelengths into one multi-wavelength light signal, or separates one multi-wavelength light signal into light signals with different wavelengths. The optical multiplexer/demultiplexer is an indispensable optical component for a WDM (Wavelength Division Multiplexing) transmission system for transmitting multi-wavelength signals. In a WDM transmission system, light signals to be transmitted by one optical fiber transmission line are multiplexed by an optical multiplexer at the optical transmitter side, and the multiplexed light signal is demultiplexed by an optical demultiplexer at the optical receiver side.
For such an optical multiplexer/demultiplexer, an optical multiplexer/demultiplexer, which includes an AWG (Arrayed Waveguide Grating) or a reflection grating, can be used. While an AWG is expensive, a reflection grating is superb in mass production, and is relatively inexpensive. This is because many replicas can be easily created from one shape of a grating. Therefore, recently optical multiplexers/demultiplexers which include a reflection grating are being commercialized.
For example, the optical multiplexer/demultiplexer disclosed in Japanese Patent Laid-Open No. 7-77627 comprises a plurality of optical waveguides formed on a planar substrate, a reflection grating and a lens. In the optical multiplexer/demultiplexer, the lens is disposed between the end faces of the optical waveguides and the grating. If a multi-wavelength light signal enters one of the optical waveguides, the light signal is emitted from the end face of the optical waveguide. The light signal reaches the grating through the lens. The wavelength components of the light signal are diffracted by the grating at angles according to the wavelengths. These wavelength components enter the lens at different angles from one another, and individually enter the end faces of the other optical waveguides. Thus, the multi-wavelength light signal is demultiplexed into light signals with different wavelengths. In the reverse propagation path, light signals with different wavelengths are multiplexed into a multi-wavelength light signal.
In the optical multiplexer/demultiplexer disclosed in the above publication, light signals with different wavelengths diffracted by grating travel in the different directions. Therefore, in order to efficiently send light signals with different wavelengths into the end faces of the corresponding waveguides, sophisticated lens design and adjustment of the optical system are required.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an optical multiplexer/demultiplexer which can multiplex/demultiplex light efficiently and which can be manufactured at low cost.
An optical multiplexer/demultiplexer according to the present invention comprises a first port, one or more second ports, and first and second diffraction gratings. The first grating receives and diffracts light from the first port. The second grating diffracts the light diffracted by the first grating to direct the light to the one or more second ports. The second grating is disposed parallel with the first grating. The second grating may have a diffraction surface parallel with a diffraction surface of the first grating. The second grating has the same grating interval and grating direction as the first grating. The multiplexer/demultiplexer demultiplexes a multi-wavelength light signal incident on the first port into light signals with different wavelengths, and outputs at least one of the light signals through the one or more second ports.
The multi-wavelength light signal incident on the first port is diffracted by the first grating at diffraction angles according to the wavelengths to form the light signals with different wavelengths. The light signals are diffracted again by the second grating at diffraction angles according to the wavelengths. The first and second gratings are disposed parallel with each other, and both have the same grating interval and grating direction. Therefore, the light signals with different wavelengths diffracted by the second grating travel parallel with each other. Thus, the optical multiplexer/demultiplexer can send the light signals easily and efficiently to the corresponding second ports without sophisticated lens design and adjustment of the optical system. Furthermore, in the optical multiplexer/demultiplexer, the grating, whose replicas can be made at low cost, is used rather than an expensive AWG. Consequently, the optical multiplexer/demultiplexer can be manufactured at low cost.
The optical multiplexer/demultiplexer may comprise a plurality of second ports. In this case, the optical multiplexer/demultiplexer may multiplex light signals with different wavelengths incident on the second ports into a multi-wavelength light signal, and output the multi-wavelength light signal through the first port.
A mirror parallel with the first grating may be disposed on an optical path between the first and second gratings. In this case, the light incident on the first port is diffracted by the first grating, reflected by the mirror, and then diffracted again by the second grating. The first and second gratings may be integrated together. In this case, the optical system can be adjusted more easily. It is preferable that the reflectance of the mirror is 90% or more at a working wavelength band. In this case, loss in the transmission band may be small.
The optical multiplexer/demultiplexer may further comprise a first lens and one or more second lenses. The first lens may be disposed on an optical path between the first port and first grating. The first lens has an optical axis forming an angle &thgr;
0
with the perpendicular of a diffraction surface of the first grating. The one or more second lenses may be disposed on optical paths between the second grating and the one or more second ports. The one or more second lenses have optical axes forming the angle &thgr;
0
with the perpendicular of a diffraction surface of the second grating. In this case, multiplexing and demultiplexing are performed very efficiently.
It is preferable that f
1
·NA
1
<f
2
·NA
2
is satisfied where a focal distance of the first lens is f
1
, a numerical aperture of a first optical waveguide to be coupled with the first lens is NA
1
, a focal distance of each second lens is f
2
, and a numerical aperture of each of one or more second optical waveguides to be coupled with the one or more second lenses is NA
2
. In this case, the transmission wavelength spectrum of light to be transmitted becomes wide and flat.
A slit device may be disposed between the one or more second lenses and second grating. The slit device includes one or more slits arranged on optical axes of the one or more second lenses. When the width of each slit along a direction perpendicular to both the optical axes of the one or more second lenses and grating direction of the second grating is S, the formula S<2·f
2
·NA
2
is satisfied. In this case, the transmission wavelength spectrum of light to be transmitted becomes wide and flat. It is preferable that the slit width S is variable. In this case, a multiplexing/demultiplexing characteristic of the optical multiplexer/demultiplexer can be adjusted by modulating the slit width S.
It is preferable that an optical path length between the first and second gratings is variable. In this case, the multiplexing/demultiplexing characteristic of the optical multiplexer/demultiplexer can be adjusted by modulating the optical path length.
The optical multiplexer/demultiplexer may further comprise a polarization separating element, polarization plane paralleling means, polarization plane orthogonalizing means, and polarization combining element. The polarization separating element polarizes and separate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical multiplexer/demultiplexer and adjustment method thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical multiplexer/demultiplexer and adjustment method thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical multiplexer/demultiplexer and adjustment method thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3311605

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.