Optical waveguides – With optical coupler – Particular coupling structure
Reexamination Certificate
1999-03-15
2001-07-17
Palmer, Phan T. H. (Department: 2874)
Optical waveguides
With optical coupler
Particular coupling structure
C385S088000, C385S090000
Reexamination Certificate
active
06263137
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical module substrate, an optical module and a method of manufacturing the optical module; and, in particular, to an optical module substrate, an optical module having a single substrate provided with a fiber support groove and a ferrule support groove, and a method of making the same.
2. Related Background Art
In conventional optical modules, a support member for mounting a ferrule, an optical fiber, and a laser diode or the like is constituted by a platform made of silicon and a metal base on which the platform is mounted. A groove for guiding an optical fiber is provided on the platform, while a groove for supporting a ferrule is on the metal base. A laser diode, the optical fiber, and the ferrule are whole mounted on the support member.
A method of manufacturing the optical module comprises the steps of: forming the silicon platform with the groove for the optical fiber; forming the metal base with the groove for the ferrule; mounting the platform to the base; mounting the laser diode of the platform; and disposing the ferrule and the optical fiber in their corresponding grooves.
In a conventional manufacturing method of an optical module, the base and the platform are bonded together after separately forming each member. Since the base and the platform is made of different members, it is necessary to precisely shape both grooves and align the groove for the optical fiber and the groove for the ferrule with high accuracy.
Japanese Patent Application Laid-Open No. 57-76509 discloses a device for coupling an optical fiber to a lens. The device comprises a groove for holding the optical fiber and a groove for arranging a rod lens. Both grooves are formed on a single substrate. The application also discloses a method of manufacturing the device. This coupling device, however, does not relate to optical modules and is different from the present invention.
Japanese Patent Application Laid-Open No. 2-7010 discloses a method of manufacturing a device having a tandem groove. The method comprises a step of forming a groove for holding an optical fiber coat stripped and a groove for holding a coated optical fiber. Since this disclosure relates to the forming grooves with different widths, it lacks to disclose any problem to be overcome by the present invention.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an optical module substrate, an optical module, and a method of manufacturing the optical module, which reduce stress caused to the optical fiber and the ferrule from the substrate with temperature change.
The optical module in accordance with the present invention comprises an optical fiber, a ferrule, a semiconductor optical device, and a substrate on which the optical fiber, the ferrule and the semiconductor optical device are mounted. The substrate has first, second, and third regions successively arranged along a predetermined axial direction. The substrate also has a ferrule support groove, an optical fiber support groove, and a device mount portion. The ferrule support groove formed in the first region has two side faces for supporting ferrule and extends in the predetermined axial direction. The optical fiber support groove formed in the second region has two side faces for supporting the optical fiber and extends in the predetermined axial direction. The device mount portion is formed in the third region and the semiconductor optical device is provided to be optically coupled to the optical fiber. Since the optical fiber support groove and the ferrule support groove are formed on the same substrate, the stress applied to the ferrule and optical fiber from these support grooves can be reduced even when the grooves are deformed due to thermal expansion.
The substrate for the optical module in accordance with the present invention can comprise a connection groove formed to separate the first region from the second region. The connection groove has a portion deeper than the ferrule support groove. The connection groove can extend from one side to the other side of the substrate and extend in a direction intersecting the predetermined axis. The distal end of the ferrule is projected to the connection groove and the optical fiber extending from the ferrule immediately reach to the optical fiber support groove.
The substrate for the optical module in accordance with the present invention can include a positioning groove. The positioning groove is provided between the device mount portion and the optical fiber support groove. The positioning groove can extend from one side to the other side of the substrate and can extend in a direction intersecting the predetermined axis to separate the second region and the third region. The relative position between the optical fiber and the semiconductor optical device can be determined by abutting the end of the fiber to a side surface of the positioning groove. Therefore appropriate optical coupling between the optical fiber and the semiconductor device can be achieved.
In the substrate for the optical module in accordance with the present invention, the device mount portion can provide a positioning mark for determining a position at which the semiconductor optical device is mounted. The positioning mark can be simultaneously formed with the ferrule support groove and the optical fiber support groove.
In the substrate for the optical module in accordance with the present invention, an intermediate groove can be formed between the optical fiber support groove and the ferrule support groove in the second region. This intermediate groove extends in the predetermined axial direction. The intermediate groove has a width greater than that of the optical fiber support groove. This groove can include at least one surface making an obtuse angle with each of the two side faces of the optical fiber support groove. Therefore, the groove can reduce the stress caused to the optical fiber.
A method of manufacturing an optical module in accordance with the present invention comprises the steps of: forming a ferrule support groove and an optical fiber support groove in the first and the second regions on the substrate; mounting a semiconductor optical device in the third region; and providing the optical fiber in the optical fiber support groove to be optically coupled to the semiconductor optical device and providing the ferrule in the ferrule support groove.
When the optical fiber support groove and the ferrule support groove are thus formed at the same time, their relative positions can be improved. The optical fiber and the ferrule are disposed in the optical fiber support groove and the ferrule support groove, respectively. The optical module can be manufactured without any excess force to the optical fiber.
A method of manufacturing an optical module in accordance with the present invention can further comprise the step of forming a connection groove to separate the first region and the second region. An arrangement between the optical fiber support groove and the ferrule support groove can be adjusted by the shape of the connection groove. The optical fiber extending from the ferrule immediately reaches to the optical fiber support groove.
The method of manufacturing an optical module in accordance with the present invention can include the step of; forming a positioning mark for determining a position at which the semiconductor optical device is mounted; and the step of aligning the semiconductor optical device by the positioning mark. Since the optical fiber support groove and the positioning mark can be accurately formed for their relative position, the semiconductor optical device can be aligned with respect to the optical fiber support groove.
The method of manufacturing an optical module in accordance with the present invention can include the step of forming an intermediate groove simultaneously with the optical fiber support groove and the ferrule support groove. The intermediate groove is formed between the optical fib
Nakanishi Hiromi
Yoneyama Shunichi
McDermott & Will & Emery
Palmer Phan T. H.
Sumitomo Electric Industries Ltd.
LandOfFree
Optical module substrate, optical module, and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical module substrate, optical module, and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical module substrate, optical module, and method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2559939