Optical waveguides – Temporal optical modulation within an optical waveguide – Electro-optic
Reexamination Certificate
2001-05-17
2003-11-25
Sanghavi, Hemang (Department: 2874)
Optical waveguides
Temporal optical modulation within an optical waveguide
Electro-optic
C385S001000, C385S008000, C385S014000, C385S039000, C385S040000, C359S321000, C359S196100
Reexamination Certificate
active
06654511
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to optical devices, and more particularly to optical waveguide devices.
BACKGROUND OF THE INVENTION
In the integrated circuit industry, there is a continuing effort to increase device speed and increase device densities. Optical systems are a technology that promise to increase the speed and current density of the circuits. Optical devices, such as optical modulators are used in these optical systems. Such optical modulators can be used to perform a variety of functions in integrated circuits such as signal transmission and attenuation. Optical modulators typically require different devices to phase modulate or amplitude modulate light.
Optical devices that perform different functions are typically formed and shaped differently in order to perform the different functions. As such, each type of optical device, and each size of the same optical device type, has to be manufactured distinctly. Therefore, the production of precision optical devices is expensive. Additionally, optical devices are susceptible to changes in temperature, contact, pressure, humidity, etc. As such, the optical devices are typically contained in packaging that maintains the conditions under which the optical devices are operating. Providing such packaging is extremely expensive. Even if such packaging is provided, passive optical devices may be exposed to slight condition changes. As such, the passive optical devices perform differently under the different conditions. The modulators will modulate the light a different amount. If the characteristics of a passive optical device is altered outside of very close tolerances, then the optical device will not adequately perform its function. In other words, there is no adjustability for passive optical devices.
It would therefore be desirable to provide an optical modulator that can both phase modulate and amplitude modulate, or a combination of the two, using the same device. Additionally, it would be desired to provide an optical device whose operation can be adjusted either to control the amount of modulation, or to compensate for changed parameters.
SUMMARY OF THE INVENTION
The present invention is directed to an apparatus and associated method for modulating the propagation constant of a region of modulating propagation constant in an optical waveguide. The method comprising positioning an electrode of a prescribed electrode shape proximate the waveguide. The region of modulating propagation constant is projected into the waveguide and corresponds, in shape, to the prescribed electrode shape by applying a voltage to the shaped electrode. The propagation constant of the region of modulating propagation constant is controlled by varying the voltage.
REFERENCES:
patent: 4422088 (1983-12-01), Gfeller
patent: 4695120 (1987-09-01), Holder
patent: 4758092 (1988-07-01), Heinrich et al.
patent: 4761620 (1988-08-01), Bar-Joseph et al.
patent: 4865427 (1989-09-01), Kingston et al.
patent: 4871224 (1989-10-01), Karstensen et al.
patent: 4904039 (1990-02-01), Soref
patent: 4917450 (1990-04-01), Pocholle et al.
patent: 4939793 (1990-07-01), Stewart
patent: 4966430 (1990-10-01), Weidel
patent: 5061027 (1991-10-01), Richard
patent: 5140651 (1992-08-01), Soref et al.
patent: 5153770 (1992-10-01), Harris
patent: 5159700 (1992-10-01), Reid, deceased et al.
patent: 5198684 (1993-03-01), Sudo
patent: 5355237 (1994-10-01), Lang et al.
patent: 5400419 (1995-03-01), Heinen
patent: 5432630 (1995-07-01), Lebby et al.
patent: 5434434 (1995-07-01), Kasahara et al.
patent: 5459799 (1995-10-01), Weber
patent: 5485021 (1996-01-01), Abe
patent: 5502779 (1996-03-01), Magel
patent: 5559912 (1996-09-01), Agahi et al.
patent: 5568574 (1996-10-01), Tanguay, Jr. et al.
patent: 5605856 (1997-02-01), Goosen et al.
patent: 5625636 (1997-04-01), Bryan et al.
patent: 5625729 (1997-04-01), Brown
patent: 5638469 (1997-06-01), Feldman et al.
patent: 5696862 (1997-12-01), Hauer et al.
patent: 5835646 (1998-11-01), Yishimura et al.
patent: 5838870 (1998-11-01), Soref
patent: 5844822 (1998-12-01), Yoshida
patent: 5864642 (1999-01-01), Chun et al.
patent: 5872360 (1999-02-01), Paniccia et al.
patent: 5878175 (1999-03-01), Sonoda et al.
patent: 6016374 (2000-01-01), Adams et al.
patent: 6075908 (2000-06-01), Paniccia et al.
patent: 6108472 (2000-08-01), Rickman et al.
patent: 6122419 (2000-09-01), Kurokawa et al.
patent: 6166846 (2000-12-01), Maloney
patent: 6177685 (2001-01-01), Teraguchi et al.
patent: 6188818 (2001-02-01), Han et al.
patent: 6208773 (2001-03-01), Wickham et al.
patent: 6221565 (2001-04-01), Jain et al.
patent: 6222951 (2001-04-01), Huang
patent: 2001/0031112 (2001-10-01), Frish et al.
patent: 2001/0031113 (2001-10-01), Frish et al.
patent: 2002/0048422 (2002-04-01), Cotterverte et al.
patent: 61-11708 (1986-01-01), None
patent: 2000-304956 (2000-11-01), None
Michael C. Parker et al., Applications of Active Arrayed-Waveguide Gratings in Dynamic WDM Networking and Routing, Journal of Lightwave Technology, vol. 18, No. 12, Dec. 2000.
Bardia Pezeshki et al., Vertical Cavity Devices as Wavelength Selective Waveguides, Journal of Lightwave Technology, vol. 12, No. 10, Oct. 1994.
Lucent Technologies, Bell Labs Innovations, Arrayed Waveguide Grating Multiplexer/Demultiplexer, Jan. 2000.
Robert Shi and Tomasz Jannson, Optical Interconnections Foundations and Applications, Chapter 5, Integrated Optical Waveguide Routing—Micro-optics, Artech House, pp. 141-225.
Amalia N. Miliou et al., A 1.3 &mgr;m Directional Coupler Polarization Splitter by Ion Exchange, Journal of Lightwave Technology, vol. 11, No. 2, Feb. 1993.
Gijs J. M. Krijnen et al., A New Method for the Calculation of Propagation constants and Field Profiles of Guided Modes of Nonlinear Channel Waveguides Based on the Effective Index Method, Journal of Lightwave Technology, vol. 12, No. 9, Sep. 1994.
Xiao, X., et al. Fabry-Perot Optical Intensity Modulator at 1.3mm in Silicon, IEEE Photonics Technology Letters, vol. 3, No. 3, Mar. 1991, pp. 230-231.
Sanghavi Hemang
SiOptical Inc.
Wong Eric
LandOfFree
Optical modulator apparatus and associated method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical modulator apparatus and associated method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical modulator apparatus and associated method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3126868