Optical: systems and elements – Mirror – With support
Reexamination Certificate
2000-06-09
2001-11-20
Sikder, Mohammad (Department: 2872)
Optical: systems and elements
Mirror
With support
C359S871000, C359S223100, C359S224200, C359S225100
Reexamination Certificate
active
06318871
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to a Microelectromechanical System (MEMS) fabricated optical mirror system that is capable of being tilted on two orthogonal axes by means of electrostatic actuation. Particular application to the use of these mirrors in the deflection of optical space beams is emphasized.
BACKGROUND OF THE INVENTION
Fiber optic communication systems currently employ switching systems to route signals at central office switching centers. These electro-optic systems rely on converting the light output from each “incoming” fiber into electrical form, extracting the data content in the resultant electrical signal, then utilizing conventional electrical switches to route the data content to a modulatable optical source that is coupled to a“destination” optical fiber. This detection, switching, and remodulation process is expensive, complex, power consuming, and subject to component failure.
Alternate “All Optical” switching systems, employing mechanically actuated bulk optic and MEMS fabricated devices, currently exist. These devices utilize electromagnetic, piezoelectric and electrostatic actuators to physically move prisms, mirrors and portions of optical fibers to affect switching of signals between optical fibers. In addition, fiber-to-fiber switches employing Grating Waveguides, Rowland Circle Gratings, and planar gratings, permit dedicated switching based on optical wavelength.
Cascaded binary tree configurations, employing switchable optical couplers using electrostatically variable index material, (Lithium Niobate and polymers), as well as Mach Zender interferometers utilizing thermoelectric heaters to affect unbalance, are also currently state of the art.
Many of the MEMS switches employ a space-beam deflection system similar to the electrical “Cross Bar” switch common in telephone system. This approach requires that the number of mirrors for a given input/output port count be determined by the square of the port count figure. The overwhelming number of mirrors dictated by this high port-count switching approach exceeds that which can be produced with any realistic process yield, and survive any reasonable operating period.
Except for some of the MEMS electrostatically actuated devices, none of the above methods of optical switching meets the requirements currently being specified for high fiber port count, (up to 1024 by 1024) Optical Cross Connect switches. Problems of cost, reliability, insertion loss, polarization sensitivity, isolation, wavelength dependence, power consumption, and in some instances, switching speed, either individually or collectively mitigate against their use. Accordingly, what is needed is a system and method for overcoming the above-identified issues under the constraint of a simple CMOS-compatible fabrication process.
An optical mirror system design is desired that has high-resolution 2-D scanning capability and deflection capability, made with a surface-micromachining process. In order to achieve high-resolution, large mirror size and rotation angles are necessary.
The present invention addresses such a need.
SUMMARY OF THE INVENTION
An optical mirror system in accordance with the present invention is disclosed. The optical mirror system comprises a mirror frame and an optical surface coupled to the mirror frame. The mirror system further includes an electrostatic shield coupled to optical surface and the mirror frame and an electrode system for causing the optical surface to be rotated without being deformed. In operation, primary and secondary electrodes are utilized. Differential capacitive sensing may be used to reduce the noise in the sense signal. The mirror can be fabricated using standard surface-micromachining processes, and aside from one-time assembly operations, the device has no frictional wear.
A device in accordance with the present invention meets the requirements for a directly scalable, high port count optical switch, utilizing a unique two mirror per optical I/O port configuration. An optical mirror in accordance with the present invention can be utilized in, but is not limited to, the following applications: optical add-drop multiplexers, wavelength routers, free-space optical interconnects, chip-level optical I/O, optical scanning displays, optical scanner (bar-codes, micro cameras), optical storage read/write heads, laser printers, medical replacement for glasses (incorporated with adaptive optics), medical diagnostic equipment, optical scanning for security applications. Integration of an optical scanning mirror with optical detectors can reduce the cost of imaging applications by reducing the number of detectors needed to capture 1-D or 2-D optical information.
REFERENCES:
patent: 5408069 (1995-04-01), Mischel, Jr.
patent: 5438235 (1995-08-01), Sommerer et al.
patent: 6046840 (2000-04-01), Huibers
patent: 6072617 (2000-06-01), Henck
C Speed Corporation
Sawyer Law Group LLP
Sikder Mohammad
LandOfFree
Optical mirror system with multi-axis rotational control does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical mirror system with multi-axis rotational control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical mirror system with multi-axis rotational control will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2583403