Optical member with handling portion and method for...

Optical: systems and elements – Lens – With support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06683733

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical member such as a lens element preferably applicable to an optical communication devices, tools, and systems and more particularly, to an optical member such as a micro-lens suitable for constituting things by mean of a microscopic optical element of the diffraction type such as a Computer Generated Holographic (CGH) optical element. The invention also relates to a method for manufacturing the optical member as described above, an optical module, and a method for mounting the optical member as mentioned above.
2. Prior Art
With regard to the optical member coupled to a laser diode and an optical fiber in the field of the optical communication, the Japanese patent publication No. 7-199006 and the ditto No. 11-295561 have already disclosed it publicly. The former proposes an optical coupling by means of a ball lens in the form of a sphere while the latter describes a circular lens provided with an annular portion formed along the external edge of the lens.
There has been also devised and reported an optical member like a lens which are manufactured by using the photo-lithography and etching technique and used in the above field. In this example, a lens or the like having a desired shape is formed on the silicon substrate by using the photolithographic process.
Being formed in this way, the lenses are often treated in the thin film formation process to be coated with a tin film, an anti-reflection film, a filtration film and so forth, for instance.
These lenses are arranged and mounted in their respective predetermined positions on a semiconductor substrate, on which a laser diode, an optical fiber, and other elements are mounted, such that the respective optical axes of them meets those of corresponding elements. At the time of mounting, these lenses are arranged on the corresponding grooves formed on the semiconductor substrate, thereby being appropriately positioned to be coupled to the laser diode, the optical fiber and other corresponding elements.
SUMMARY OF THE INVENTION
However, the diameter of the conventional micro-lens like the ball lens or the lens provided with the annular portion as describe above, is no more than 100 &mgr;m through 200 &mgr;m. Consequently, it would never be easy to handle and correctly arrange such a minute micro-lens in a predetermined position.
Then, even if trying to handle and hold the minute micro-lens by making use of the negative pressure, the micro-lens provided with the annular portion has a circular curved surface along the circumference thereof, so that it would not properly work to suck in and hold such lens by utilizing the negative pressure from the side portion of the lens.
Similarly, in case of the lens as produced in the above process utilizing the photolithographic etching, the lens size becomes also very small. In this manufacturing process, a lot of lens elements are formed in usual on a single silicon substrate, and at the stage where the lens element formation is completed, lens elements are split into a lot of individual lens elements. Consequently, it would become so difficult to collect and handle them one by one.
Furthermore, in the thin film formation process for forming an anti-reflection film and so on, a large number of individual lenses have to be drawn up in a predetermined form such that their respective surfaces to be coated with the thin film are kept at a same level, and then, to be moved to the vapor deposition process. This is also neither easy nor efficient.
Similarly, in case of the process of mounting the individual lens elements, it would also be not easy to handle and arrange such minute lens elements in the corresponding predetermined positions, respectively.
Heretofore, when mounting the lens element like this on the supporting substrate, there has been often taken such a way that the positioning of each element is carried out by using the upper side of the lens formation plane as a reference point, and the mounting is then executed by bringing the side face of the lens formation plane into contact with the supporting substrate. However, this way sometimes causes a mounting error depending on the external form of the lens element. For instance, if the angle made by the lens formation plane and the said face thereof includes a certain error, there is caused a distance error related to the slant of the lens element. This distance error becomes a significant cause which reduces the efficiency of the optical coupling between the lens element and the laser diode, optical fiber, and so forth.
Then, the invention has been made for obviating such problems as described above. Accordingly, it is an object of the invention to provide an optical member which can be handled with ease, a method for manufacturing the same, and an optical module including the same. Furthermore, another object of the invention is to provide an optical member which can be sucked in and held with ease by utilizing negative pressure. Still further, another object of the invention is to provide an optical member which can be mounted with high accuracy and ease, a method for mounting the same, and an optical module packaged with high accuracy and ease.
In order to solve problems as described above, according to the invention, there is provided an optical member including a luminous flux conversion portion formed on the surface of an optical substrate; an edge portion formed along a part of the circumference of the luminous flux conversion portion; and a handling portion which is provided on the side of the other part of the circumference of the luminous flux conversion portion in a plane approximately in parallel with the surface of the luminous flux conversion portion, and is extended with a width wider than the luminous flux portion.
In the above optical member as described above, the optical member includes an optical element, an optical element aggregation, an optical element aggregation group and so forth; to put it more concrete, a lens element, a lens element aggregation, a lens element aggregation group, lens array and so forth.
In the above optical member as described above, this specification and scope of claims for patent as attached thereto, the luminous conversion portion means those which have the function of converting the luminous flux, for instance, the function of converging, diverging, reflecting, deflecting the luminous flux or the like. Also, depending on the arrangement condition of it, the luminous conversion portion includes those which convert the incident luminous flux into parallel light rays, or divide the incident luminous flux into a plurality of component waves. The lens, diffraction optical element, and forth are concrete examples of the luminous flux conversion portion.
The optical substrate may be formed by means of a crystalline substrate such as a silicon crystal substrate. Besides, the crystalline substrate may be formed by using other materials than silicon, for instance, GaAs, InP, GaP, SiC, Ge and so forth.
According to the constitution of the optical member as described above, the handling portion can be held by means of a griping means or a suction means utilizing the negative pressure. With this, when handling the optical member, it becomes possible to hold the optical member by the handling portion thereof. Comparing with the prior art, therefore, the optical member can be much easily handled neither giving any damage to the luminous conversion portion nor contaminating the surface of the same.
At that time, the above handling portion may be constituted such that it has a form extending straightforward and is integrated with the edge portion at an approximately middle point between both ends thereof. The handling portion may take the form of an approximately rectangular parallelepiped, the edge portion may take the form of an approximately circular arc, and the circular arc form may extend from the formation plane side of the luminous flux conversion portion to the opposite plane side thereof, thereby

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical member with handling portion and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical member with handling portion and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical member with handling portion and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3251390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.