Optical inspection system and method

Optics: measuring and testing – Inspection of flaws or impurities – Surface condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S237400

Reexamination Certificate

active

06407809

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the field of automatic inspection techniques, and relates to an optical inspection method and system, particularly useful for inspecting semiconductor wafers progressing on a production line.
BACKGROUND OF THE INVENTION
The manufacture of semiconductor devices consists of a multi-staged process requiring wafers progressing on a production line to be inspected between sequential manufacturing steps. One of the principle processes in the manufacture of semiconductor devices is the photolithography process. It consists of patterning the wafer's surface in accordance with the active elements of semiconductor devices to be manufactured. The photolithography process includes the following main operational steps:
a. Coating the wafer with a photoresist material;
b. Exposing the photoresist material through a mask with a predetermined pattern in order to produce a latent image of the mask on the photoresist material; and
c. Developing the exposed photoresist material in order to produce the image of the mask on the wafer.
Generally speaking, prior to the photolithography process, the wafer is prepared for the deposition of one or more layers. After the completion of the photolithography process, the uppermost layer of the wafer is etched. Then a new layer is deposited, in order to start the photolithography and etching operations again. In this repetitive manner, a multi-layer semiconductor wafer is produced.
FIG. 1
illustrates a block diagram of a typical photocluster
1
used for performing the photolithography process in semiconductor fabrication plants (FABs). The photocluster
1
(or link) is composed of two main parts: a phototrack
2
and an exposure tool
4
. The phototrack
2
includes a coater track
6
associated with a cassette load station
6
a
, and a developer back
8
associated with a cassette unload station
8
a
. Alternatively, both coating and developing functions may be combined and realized in a common station. A load/unload robot R is mounted for movement within the photocluster
1
for conveying wafers W to and from the photocluster tools. The coater track
6
, the exposure tool
4
and the development track
8
are tightly joined together in order to minimize process variability and any potential risk of contamination during photolithography, which is a super sensitive process.
It is apparent that in such a complex and delicate production process various problems, failures or defects may arise or develop during each manufacturing step or from the serial combination of steps. Due to the stringent quality requirements, any defect which is not timely detected, may result in the rejection of a single wafer or the entire lot. The wafer cannot be taken out of tie photocluster tools set-up for measurement or inspection before the entire photolithography process is completed and the wafer arrives at the cassette station
8
a
. The wafers are typically inspected at a stand-alone monitoring system (CD-SEAM) which is installed outside the production line, and to which the wafers are transferred by means of a separate handling system. This reduces the throughput of the production line.
A manual inspection technique is conventionally used for inspecting the wafers for so-called macro lithography defects, such as scratches or foreign particles of dust and dirt. Generally, macro defects are considered as defects having tenths of micrometers in size. The manual inspection technique utilizes the visual examination of the wafers surface by an operator using intense light and magnification. This inspection is inconsistent and unreliable, since the results vary significantly amongst operators, due to the wafer's complexity and depending on the operators' experience. About 80% of the photo-related defects remain undetected. Manual inspection has low throughput, and could not be performed within the FAB tools. Manual inspection is not cost effective.
Various automatic inspection systems have been developed. They utilize either a line CCD camera or an area CCD camera The basic problem with line type detectors is their non-effective use of illuminating radiation. This is owing to the fact that a strip illuminated on the surface of the wafer under inspection is substantially wider than the width of the field of view of a line CCD camera. Additionally, the line CCD based technique suffers from a complicated mechanical arrangement needed for moving the line CCD camera along the X- and Y-axes relative to the wafer under inspection. Moreover, different resolutions are achieved in the X- and Y-directions, due to the movement of the image during scanning.
As for the area sensor based technique, it utilizes a so-called step-and-repeat mode of operation, wherein the camera and the wafer are mounted for movement relative to each other to cover the entire surface of the wafer. More specifically, the camera and the wafer are moved step-by-step, and images are acquired upon the camera or the wafer stops. The technique requires a quite complicated mechanical stage providing movement along two mutually perpendicular axes. Additionally, it results in low throughput due to a great number of movement steps, and requires an additional footprint for performing such a two-dimensional movement.
Machine vision systems having multiple cameras have been developed, being disclosed, for example, in U.S. Pat. No. 5,768,443. In this system, images are acquired simultaneously by a plurality of cameras. The fields of view of the cameras cover a relatively large area of the wafer under inspection, thereby increasing the throughput of the system, as compared to the techniques utilizing a single line or area sensor. However, this patent does not present any example of the cameras' arrangement, which would be useful in an integrated inspection. An inspection machine should be inexpensive, simple to erect and maintain, and should have a small footprint (like a wafer cassette) to meet the requirements of the integrated inspection.
Laser inspection systems have been developed which utilize various types of scanners and collectors for scanning the wafer's surface during the translational movement, and for collecting light reflective and scattered from the surface. Such systems are disclosed, for example, in U.S. Pat. Nos. 4,630,276; 5,108,176; 5,127,726 and 5,712,701. Unfortunately, these systems are complicated and expensive. Since they use monochromatic laser illumination, they are non-effective and insufficient for the inspection of developed photoresist for macro defects.
SUMMARY OF THE INVENTION
There is accordingly a need to facilitate the automatic inspection of workpieces progressing on a production line, by providing a novel system and method for the optical inspection of such workpieces.
It is a major feature of the invention that the optical inspection system may be integrated into the production line. It is simple, inexpensive and compact, and provides for inspection with a high throughput of workpieces.
The main idea of the present invention is based on the following. A semiconductor wafer is typically a substantially flat workpiece, having an axis of symmetry (i.e. is round). Consequentially, one half of the wafer can be inspected by appropriately moving respective parts of a scanning apparatus above it, and, upon rotating the wafer about its axis of symmetry by 180°, inspecting the other half of the wafer. Hence, suitable mechanics should be provided for moving the respective components of the scanning apparatus solely within an inspection area equal to the half of the wafer, rather than moving them above the entire wafer, or moving both the respective components and the wafer relative to each other. This significantly simplifies the mechanical equipment of the entire system, as well as its footprint, and enables the use of a robot typically installed in the production line for conveying wafers to and from a plurality of stations. To scan the half of the wafer (inspection area), a plurality of optical assemblies is mounted for mov

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical inspection system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical inspection system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical inspection system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2919074

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.