Optical information medium and making method

Stock material or miscellaneous articles – Circular sheet or circular blank

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S064400, C430S270110, C369S275100

Reexamination Certificate

active

06576319

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a multi-layer information medium which has at least two information-storing layers such as recording layer, and a method for making such medium.
2. Prior Art
There is a growing need for an optical disk having a higher density and a higher capacity. DVD (Digital Versatile Disk) is already commercially available, and the DVD has a storage capacity of about 4.7 GB per single side which is about seven times larger than the compact disk. Technologies enabling further increase in the amount of information recorded have been actively developed.
Technologies that have been used for increasing the recording capacity of an optical disk include use of a recording/reading beam having a shorter wavelength, use of an objective lens having a higher NA (numerical aperture) in the optical system irradiating the recording/reading beam, increase in the number of recording layers, and multi-value recording. Among these, three-dimensional recording by increasing the number of recording layers enables remarkable increase in the recording capacity at low cost compared to the use of a shorter wavelength or use of a lens with a higher NA. The three dimensional recording medium is described, for example, in Japanese Patent Application Kokai (JP-A) 198709/1997, and JP-A 255374/1996 discloses a medium wherein a rewritable information storage layer and a read only information storage layer are laminated.
In a multi-layer recording medium, a transparent resin layer which is transparent to the recording/reading beam is generally provided between adjacent recording layers, and the recording/reading beam reaches the recording layer after passing through the transparent resin layer and returns to the optical pick up after being reflected at the surface of the recording layer. Accordingly, the transparent resin layer is required to exhibit strictly uniform thickness, quality, and optical properties. When the medium has a disk shape and the transparent layer comprises a resin, the transparent layer is generally formed by spin coating since the spin coating is a process which is capable of forming a relatively uniform transparent layer. The transparent layer formed by the spin coating, however, suffers from the problem that the layer is thicker in the outer peripheral region of the disk compared to the inner peripheral region. In other words, the layer suffers from the problem of inconsistent thickness in the radial direction of the disk. The number of the transparent layers increase with the number of the recording layers, and such thickness inconsistency is accumulated with the increase in the number of the data layers. As a consequence, even if the recording/reading beam entered the medium in the outer peripheral region of the disk at normal direction, the data beam reflected at the surface of the recording layer will not be normal to the medium surface, and the quantity of the light returning to the optical pickup will be reduced. The medium will then exhibit different outputs in the inner peripheral region and in the outer peripheral region.
In the case of a joined optical recording disk wherein the recording layer has been sandwiched between two substrates, increase in the thickness of the transparent resin layer in its peripheral region is likely to result in the warping or distortion of the optical disk. Improvement in the mechanical precision would be then difficult.
In the reading of a multi-layer recording medium including a plurality of recording layers by using an optical pickup which emits a reading beam, the optical pickup receives the beam reflected from the recording layer on which the reading beam had focused, and in addition, the beam reflected from the recording layer(s) other than the recording layer to which the reading beam had focused. This results in the signal interference between the plurality of recording layers, and cross talk is induced. As a consequence, noise is introduced in the signal that has been read. The influence of the beam reflected from the recording layer other than the target recording layer reduces inversely with the square of the distance between the recording layers. Therefore, increase in the distance between the adjacent recording layers is effective in reducing the noise induced. For example, when the medium is used with an optical pickup having the structure normally employed in DVD and other conventional optical disks, the recording layers are disposed at a mutual distance of at least 30 &mgr;m, and preferably at least 70 &mgr;m to realize the signal quality of practically acceptable level. This corresponds to the Examples of the JP-A 198709/1997 wherein a transparent resin layer of 100 &mgr;m thick is provided between the recording layers, and the JP-A 255374/1996 wherein two adjacent information storage layers are disposed at a distance of 30 &mgr;m or more.
However, when the distance between the adjacent recording layers is increased to as large as 30 &mgr;m or more, limitation in the number of recording layers in the medium will be required to avoid excessive increase in the disk thickness, and the total storage capacity of the disk will also be limited. In addition, formation of a transparent resin layer with a consistent thickness of 30 &mgr;m or more is difficult. The thick resin layer also suffers from increased internal stress and the medium will be subject to warping. As a consequence, reliable provision with the optical disk of the required mechanical precision has been difficult.
In view of such situation, JP-A 222856/1998 and SOM '94 technical digest (1994) 19, for example, propose use of an optical pickup provided with a confocal optical system which utilizes the principle of a confocal microscope for the reading of each recording layer in order to reduce the cross talk between the recording layers of the multi-layer recording medium. In the case of an optical pickup provided with a confocal optical system, a pinhole is provided in the optical system and the reading is accomplished by using the beam that had passed thorough this pinhole. Accordingly, when an optical pickup provided with a confocal optical system is used, the range of the focus servo is reduced, and a higher thickness consistency is required for the transparent resin layer.
A multi-layer recording medium also suffers from the problem as described below. In the case of the medium having a single recording layer formed on a substrate, the shape of the grooves (guide grooves) formed in the resin substrate will be transferred to the recording layer. In contrast, in the case of a medium wherein two or more recording layers are formed on the substrate with an intervening relatively thick transparent layer between the recording layers, it is quite difficult to transfer the shape of the grooves formed in the substrate to all of the recording layers since the groove depth is about 100 nm at most for optical reasons while the distance between the recording layers is at least 30 &mgr;m as described above. As a consequence, formation of the grooves in the transparent resin layer by photopolymerization (2P) process will be required as described, for example, in the JP-A 198709/1997 and an eminent increase in the production cost is invited.
SUMMARY OF THE INVENTION
An object of the present invention is to realize excellent reading properties in all of the information-storing layers in a multi-layer information medium having a plurality of information-storing layers formed therewith. Another object of the invention is to realize good mechanical precision in the multi-layer information medium. A further object of the invention is to provide such multi-layer information medium at a low cost.
Such objects are attained by the present invention as described in (1) to (5), below.
(1) An optical information medium having at least two annular information-storing layers each storing recorded information and/or servo information on a disk-shaped substrate formed with a center hole or between a pair of disk-shaped substrate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical information medium and making method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical information medium and making method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical information medium and making method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3122346

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.