Optical waveguides – Accessories – External retainer/clamp
Reexamination Certificate
2001-06-01
2003-01-14
Ngo, Hung N. (Department: 2874)
Optical waveguides
Accessories
External retainer/clamp
C385S037000
Reexamination Certificate
active
06507693
ABSTRACT:
TECHNICAL FIELD
The present invention generally relates to fiber gratings and, more particularly, to a tunable Bragg grating and laser.
BACKGROUND ART
It is known in the art of fiber optics that Bragg gratings embedded in the fiber may be used in compression to act as a tunable filter or tunable fiber laser, as is described in U.S. Pat. No. 5,469,520, entitled “Compression Tuned Fiber Grating” to Morey, et al and U.S. Pat. No. 5,691,999, entitled “Compression Tuned Fiber Laser” to Ball et al, respectively, which are hereby incorporated herein by reference.
To avoid fiber buckling under compression, the technique described in the aforementioned U.S. Pat. Nos. 5,469,520 and 5,691,999 uses sliding ferrules around the fiber and grating and places the ferrules in a mechanical structure to guide, align and confine the ferrules and the fiber. However, it would be desirable to obtain a configuration that allows a fiber grating to be compressed without buckling and without sliding ferrules and without requiring such a mechanical structure.
Also, it is known to attach an optical fiber grating to within a glass tube to avoid buckling under compression for providing a wavelength-stable temperature compensated fiber Bragg grating, as is described in U.S. Pat. No. 5,042,898, entitled “Incorporated Bragg Filter Temperature Compensated Optical Waveguide Device”, to Morey et al. However, such a technique exhibits creep between the fiber and the tube over time, or at high temperatures, or over large compression ranges.
SUMMARY OF THE INVENTION
The first aspect of the present invention is a tunable optical device, which comprises an optical waveguide having a longitudinal axis, a first mounting location and a second mounting location separated by a distance along the longitudinal axis, which transmits an optical signal, wherein the waveguide comprises a core and a cladding disposed outside the core, and wherein the cladding has an outside diameter and includes a first and a second variation region each having a modified outside diameter different from the outside diameter, wherein the first and second variation regions are respectively located at the first mounting location and the second mounting location, a Bragg grating imparted in the core of the waveguide between the first mounting location and the second mounting location, wherein the Bragg grating comprises a plurality of perturbations defined by a spacing along the longitudinal axis to partially reflect the transmitted optical signal at a reflection wavelength characteristic of the spacing of the Bragg grating, a first attachment mechanism disposed against at least one portion of the first variation region which prevents relative movement between the first variation region and the first attachment mechanism, a second attachment mechanism disposed against at least one portion of the second variation region which prevents relative movement between the second variation region and the second attached mechanism, a mounting device having a first end for fixedly mounting the first attachment mechanism and a second end which movably mounts to the second attachment mechanism and defines a separation length between the first and second attachment mechanisms along the longitudinal axis of the waveguide, and an adjustment mechanism, operatively connected to the second attachment mechanism, which adjusts the separation length, thereby causing a change in the distance between the first and second variation regions and the spacing of the Bragg grating to tune the reflection wavelength.
According to the present invention, the attachment mechanism comprises a first ferrule including a front portion having a profile substantially corresponding to the modified outside diameter of the first variation region of the cladding and a first butting mechanism butting the first ferrule against the waveguide to press the front portion of the first ferrule onto at least one portion of the first variation region at the first mounting location which limits relative movement between the first ferrule and the first variation region of the cladding, and the second attachment mechanism comprises a second ferrule including a front portion having a profile substantially corresponding to the modified outside diameter of the second variation region of the cladding and a second butting mechanism butting the second ferrule against the waveguide to press the front portion of the second ferrule onto at least one portion of the second variation region at the second mounting location which limits relative movement between the second ferrule and the second variation region of the cladding.
According to the present invention, the first butting mechanism provides a pressing force against the front portion of the first ferrule along a first direction substantially parallel to the longitudinal axis, and the second butting mechanism provides a pressing force against the front portion of the second ferrule along a second direction substantially opposite to the first direction.
According to the present invention, the waveguide further comprises a buffer layer over the cladding to protect the waveguide against the first and second attachment mechanisms and which enhances attachment of the first and second attachment mechanisms to the waveguide.
According to the present invention, the first and second ferrules comprise a plurality of pieces substantially surrounding the respective variation regions, which attach to the cladding.
According to the present invention, wherein a further waveguide segment including a cladding having a second outside diameter substantially equal to the modified outside diameter is spliced with the waveguide in order to provide each of the first and second variation regions.
According to the present invention, the modified outside diameter is provided by heating and stretching the waveguide to change the outside diameter of the cladding.
According to the present invention, the optical waveguide is an optical fiber.
According to the present invention, the adjustment mechanism can be a piezoelectric transducer, a stepping motor, a pneumatic force actuator, a solenoid or the like.
Furthermore, a section of the core between the variation regions, including the Bragg grating, is doped with a rare-earth dopant for forming a laser with the Bragg grating.
The second aspect of the present invention is a method of wavelength tuning an optical, wherein the optical device comprises an optical waveguide having a longitudinal axis to transmit an optical signal, wherein the waveguide has a first mounting location and a second mounting location separated by a distance along the longitudinal axis, and wherein the waveguide comprises a core and a cladding disposed outside the core; wherein the cladding has an outside diameter and includes a first and a second variation region each having a modified outside diameter different from the outside diameter, and wherein the first and second variation regions are respectively located at the first mounting location and the second mounting location; and a Bragg grating imparted in the core of the waveguide between the first mounting location and the second mounting location, wherein the Bragg grating comprises a plurality of perturbations defined by a spacing along the longitudinal axis to partially reflect the transmitted optical signal at a reflection wavelength characteristic of the spacing of the grating, said method comprising the steps of:
providing a first attachment mechanism disposed against at least one portion of the first variation region which prevents relative movement between the first variation region and the first attachment mechanism;
providing a second attachment mechanism disposed against at least one portion of the second variation region which prevents relative movement between the second variation region and the second attached mechanism;
providing a mounting device having a first end which fixedly mounts to the first attachment mechanism and a second end which movably mounts to the second attachment mechanism in order t
Daigle Guy A.
Dunphy James R.
Engel Thomas W.
Fernald Mark R.
Grunbeck John J.
CiDRA Corporation
Ngo Hung N.
Ware, Fressola, Van Der Slys & Adolphson LLP
LandOfFree
Optical filter device having creep-resistant optical fiber... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical filter device having creep-resistant optical fiber..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical filter device having creep-resistant optical fiber... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3016490