Optical fiber splice case with integral cable clamp, buffer...

Optical waveguides – Accessories – Splice box and surplus fiber storage/trays/organizers/ carriers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S134000, C385S136000, C385S137000

Reexamination Certificate

active

06215939

ABSTRACT:

BACKGROUND OF THE INVENTION
The subject invention is directed to a waterproof and airtight fiber cable splice enclosure assembly. Assemblies of the type under consideration are particularly well suited for enclosing and housing fiber optic cables such as loose buffer and unitube type cables and will be described with particular reference thereto. However, the apparatus could equally well be used with other types of cables or wires such as, for example, hybrid cables including copper wire, twisted pair wire or co-axial cables.
Many different types of fiber optic cable enclosures are known in the prior art. These prior enclosures are satisfactory to a greater or lesser degree but often have certain defects which make the them inconvenient to use or prevent them from being readily adaptable to changing environments and conditions. One example of an optical fiber splice case that presents a significant improvement over the earlier devices found in the prior art, however, is taught in my earlier U.S. Pat. No. 5,631,933, the teachings of which are incorporated herein by reference. Many of the features described in my earlier patent are present in the novel device described herein to a greater or lesser extent and either directly or by equivalent structure. In addition to providing improvements over my earlier apparatus, the subject optical fiber splice case presents further significant improvements over prior art devices as well.
It is, accordingly, a primary object of the subject invention to provide a cable enclosure assembly that is easy to assemble and use in the field and which has a variety of different sizes with trays and internal supports that form an inner raceway. The volume of the device enables the enclosure to store buffer cable together with unitube cable within a single closure at the same time. In addition, the subject invention provides an enclosure that provides improved pull-out load carrying capability of the cable and further provides for improved air and water tight sealing between the cable and the housing. Still further, the subject invention provides an enclosure that allows for easy manipulation of cable tie-down straps by including an improved internal tie-down clip arrangement that enables the tie-down straps to be manipulated in the field from a front face side without removing the clips. The clip arrangement also eliminates the need to reorient the housing as was the standard practice in the past to gain access under the connection clips to guide the tie-down straps through the clips. A metered air valve is provided to permit the hermetic integrity of the housing assembly while preventing over inflation.
SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, there is provided a housing assembly for enclosing cable splices generally comprising a pair of housing members having main body portions with peripheral clamping flanges extending outwardly therefrom and cooperatively positioned in opposed relationship to be clamped together. The clamping flanges have inner end portions adjacent the main body portions and free outer end portions. A resilient sealing gasket is positioned in a groove formed in one of the housing members and extending peripherally therearound adjacent the inner end portion thereof. An elongate peripherally extending rigid rib member is disposed on the other housing member and is located at a position to engage the sealing gasket when the pair of housing members are brought into their engaged assembled position.
In accordance with a still further aspect of the invention, a pair of spaced-apart elongate rod members extend from the bottom housing member into the space defined by the pair of housing members forming the fiber splice case. The pair of elongate rods are generally disposed in a parallel relationship so that one or more splice trays can be arranged in a stacked relationship to extend between the pair of rods. The trays have axially open end slots which are adapted to receive the pair of rods and, further, are adapted to be guided onto and over the rods. Suitable connecting means on the rods are arranged for releasably clamping the one or more splice trays onto the rods in a fixed manner.
Preferably, and in accordance with a more limited aspect, the rods that extend from the bottom housing member are threaded and the connecting means comprise a strap member releasably joined thereon. By the use of this particular arrangement for supporting the one or more splice trays relative to the interior of the housing assembly, it is possible to merely release the strap member slightly and pivot one end of the splice tray upwardly to remove its slotted end from engagement with the rod at that end. In that way, individual splice trays can be pivoted out of position from the stack for access to the splices therein and for access to a storage compartment below the splice trays. Alternatively, the strap member can be easily completely removed from the threaded rods so that the one or more splice trays can be slid off the rods for complete removal therefrom. In either case, the one or more splice trays can be quickly removed or oriented into a position that enables quick access thereto without removing the entire stack of trays. Thus, replacing or adding additional splices or cables within any tray is possible.
In accordance with yet another aspect of the invention, the preferred form of splice tray includes a molded plastic splice tray having a generally flat rectangular bottom wall and spaced apart upwardly extending side walls joined by a transversely extending end wall. At least one key hole slot connection area is formed in the flat bottom wall of the splice tray to provide an attachment point at which the optical fibers can be connected to the splice tray. The key hole slot connection area is preferably U-shaped enabling one or more cable tie-down straps to be manually manipulated from one side of the splice tray so that the optical cable can be attached to the tray without the need to turn the tray over.
In accordance with yet still another aspect of the invention, a plurality of clip members are provided on the inner wall of one of the housing members for providing a convenient connection area for strapping bundled fiber optic cable directly to the housing. The clip members preferably define a series of alternating grooves and tabs that are spaced apart and staggered in a manner to allow a plurality of tie-down straps to be received within a pair of grooves conveniently from one side of the clip member.
In accordance with another aspect of the invention, the pair of housing members define a splice and storage volume area that is adapted to receive loose buffer cable in addition to unitube type cable within a single fiber splice case. At least one of the housing members includes a series of arcuate walls that define an inner raceway enabling the fiber splice case to store both buffer cable and unitube cable within the closure at the same time. The inner raceway defines an oval cylindrical storage compartment within the enclosed volume space of the fiber closure so that the buffer cable can be separated from the enclosed volume surrounding the compartment and from the splice tray area above the compartment in a compact and convenient fashion.
Still yet in accordance with another aspect of the invention, an end plate member disposed between the first and second housing members includes a convex radius that is adapted to engage the inner lip area of the top housing member. Preferably, the inner lip area is substantially planar or flat in construction. In that way the bowed surface of the convex radius on the end plate member engages the inner lip region of the top housing member in a manner to distribute the engagement forces therebetween unevenly. More particularly, owing to the convex radius of the end plate member, the engagement or sealing forces between the end plate member and the top housing member is greatest in the central area of the lip area to compensate for any potential flexing or malformation of the top h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical fiber splice case with integral cable clamp, buffer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical fiber splice case with integral cable clamp, buffer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical fiber splice case with integral cable clamp, buffer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2471359

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.