Optical waveguides – Accessories – External retainer/clamp
Reexamination Certificate
1999-03-19
2001-03-13
Spyrou, Cassandra (Department: 2874)
Optical waveguides
Accessories
External retainer/clamp
C385S135000, C356S329000
Reexamination Certificate
active
06201923
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical fiber gyroscope having a fiber coil which is formed, for example, by winding an optical fiber having a length of several tens meters to several hundreds meters in a predetermined number of turns.
2. Description of the Related Art
Recently, for example, a system has been suggested and practically used, in which a gyroscope is used for a navigation system of an automobile to detect the compass direction. Especially, an optical fiber gyroscope has been suggested, which is extremely advantageous in operability, convenient handling performance, and realization of a compact and light weight system, and which is also advantageous in improvement in durability because there is no mechanically movable component. Development is being rapidly advanced at present in order to practically use such an optical fiber gyroscope.
The system of the optical fiber gyroscope will now be briefly explained. The optical fiber gyroscope is a sensor for detecting the angular velocity based on the phase difference (Sagnac phase difference) between two light beams transmitted in both directions in a fiber coil obtained by winding an optical fiber having a length of several tens meters to several hundreds meters in a predetermined number of turns. The optical fiber gyroscope is classified into those belonging to the open loop system and those belonging to the closed loop system depending on the method for detecting the phase difference.
When it is intended to produce an optical fiber gyroscope which is excellent in, for example, compact and light weight properties and durability as described above, the process for assembling the optical fiber gyroscope especially comprises the steps of winding a lengthy optical fiber around a cylindrical object to produce a fiber coil, optically coupling an optical IC chip (optical waveguide) incorporated with a phase modulator to two ends of the optical fiber led from the fiber coil, optically coupling an optical fiber led from a light source to an optical fiber to be led to a photodetector by using a coupler, optically coupling an optical fiber led from the coupler to the optical IC chip, and packaging the optical IC chip. Therefore, a problem arises in that the operation for assembling the optical fiber gyroscope is extremely complicated.
Especially, when the optical waveguide element (optical IC chip) is connected to the fiber coil, residual lengths after connection are generated at both terminals of the fiber coil. However, in the case of the conventional gyroscope, the fiber coil wound around the reel is fixed to a casing by means of screws or the like. For this reason, a limitation arises concerning the fixed position in the direction of rotation of the reel with respect to the casing, and it is difficult to rewind all of the respective residual lengths of the fiber after connection around the reel in conformity with the respective winding directions. Therefore, it is necessary to separately provide a space for accommodating the residual lengths of the fiber after connection so that the residual lengths of the fiber after connection having been wound in a form of coil are accommodated in the provided space, resulting in an extremely troublesome operation.
Further, the optical fiber, which is led from the coupler, is extremely long as well. Therefore, a problem arises in that the long optical fiber is obstructive during the operation of optical coupling to the optical IC chip. Especially, in order to prevent the optical IC chip from any application of excessive load exerted by the long optical fiber when the optical IC chip is packaged, it is necessary to support the long optical fiber as a bundle, resulting in a problem that the operation efficiency is lowered.
As described above, the conventional optical fiber gyroscope involves the problem that an extremely long period of time is required for the assembling operation, and there is a limit to reduce the production cost.
Further, as described above, the product, which is obtained by connecting the optical IC or the like to the long optical fiber, has been not necessarily satisfactory to exhibit the stable performance as the optical fiber gyroscope, depending on the way of fixation to be used when the product is produced.
SUMMARY OF THE INVENTION
The present invention has been made taking such problems into consideration, an object of which is to provide an optical fiber gyroscope which can be easily assembled in unit, which makes it possible to effectively reduce the production cost of the optical fiber gyroscope, and which makes it possible to expect the stable performance to be exhibited.
According to the present invention, there is provided an optical fiber gyroscope comprising a fiber coil composed of a lengthy optical fiber wound therearound in a predetermined number of turns, a coupler for optically coupling an optical fiber led from a light source and an optical fiber led to a photodetector, and an optical waveguide element arranged between the fiber coil and the coupler and integrated with functions of at least a phase modulator and a polarizer, the optical fiber gyroscope further comprising a fiber coil reel around which the lengthy optical fiber for constructing the fiber coil is wound in the predetermined number of turns, a coupler reel around which the optical fibers led in both directions from the coupler are wound in a predetermined number of turns, and a housing member which is formed with a plurality of compartments for accommodating at least the both reels, the light source, and the optical waveguide element.
Accordingly, the fiber coil reel around which the lengthy optical fiber is wound in the predetermined number of turns and the coupler reel around which the optical fibers led in the both directions from the coupler are wound in the predetermined number of turns are accommodated in the compartments for accommodating the both reels formed in the housing member. The light source and the optical IC chip are accommodated in the corresponding compartments respectively. Thus, the optical fiber gyroscope is constructed.
In the present invention, the plurality of constitutive elements for constructing the optical fiber gyroscope are accommodated in one housing member in a compact manner. Therefore, it is possible to facilitate realization of the small size and the light weight of the optical fiber gyroscope and exhibit the stable performance.
Since the fiber coil reel is used, it is sufficient that the lengthy optical fiber is merely wound around the fiber coil reel in the predetermined number of times, when the fiber coil is produced. Therefore, the fiber coil can be produced extremely easily in a short period of time.
When the optical fiber gyroscope is constructed, it is necessary that the optical fiber led from the fiber coil and the optical fiber led from the coupler are optically coupled to the optical IC chip respectively, and the optical IC chip, for which the optical coupling has been completed, is packaged. However, the optical fiber is freely drawn from the respective reels, for example, in the operation for the optical coupling as described above. Therefore, the operation for the optical coupling is extremely easy, and the operation for packaging the optical IC chip to be performed thereafter is easy as well. Thus, the assembling operation can be completed within a short period of time.
The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which a preferred embodiment of the present invention is shown by way of illustrative example.
REFERENCES:
patent: 5481358 (1996-01-01), Dyott et al.
patent: 0 383 231 (1990-08-01), None
patent: 0 833 128 (1998-04-01), None
H.C. LeFevre et al., “Integrated Optics: A Practical Solution For the Fiber-Optic Gyroscope”, 1986 SPIE. pp. 562-573.
Patent Abstracts of Japan, vol. 1995, No. 07, 31 Aug. 1995 & JP 07 091969 A, 7 Ap
Ichigi Takenori
Ohnuki Wataru
Soekawa Hirokazu
Tetsu Toshiyuki
Toyoda Shuhei
Burr & Brown
Hitachi Cable Ltd.
Spyrou Cassandra
Treas Jared
LandOfFree
Optical fiber gyroscope does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical fiber gyroscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical fiber gyroscope will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2467997