Optical waveguides – With disengagable mechanical connector – Optical fiber/optical fiber cable termination structure
Reexamination Certificate
2001-10-12
2004-03-09
Dunn, Drew (Department: 2872)
Optical waveguides
With disengagable mechanical connector
Optical fiber/optical fiber cable termination structure
C385S060000, C385S085000
Reexamination Certificate
active
06702479
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to an optical fiber connector which is assembled before being ground.
2. Description of the Related Art
Referring to
FIG. 1
, a conventional MT-RJ optical fiber connector has a boot (
1
), a sleeve (
2
), a spring push (
3
), a spring (
4
), a pin holder (
5
), a ferrule boot (
6
), a ferrule (
8
) and a housing (
9
). As well as these parts, a male MT-RJ optical fiber connector further uses two pins (
7
) but a female MT-RJ optical fiber connector does not. All of the parts are introduced as follows:
The housing (
9
) is hollow and is the outmost part of the MT-RJ optical fiber connector. The housing (
9
) defines two holes (
91
) on its both sides.
The ferrule (
8
) is hollow and has a rectangular cross section. For easy description, the directions including up, down, front and rear are given in FIG.
1
. The ferrule (
8
) defines two through holes (
81
) and two (four or more) fiber holes (
82
) on its front end surface.
FIG. 2
is a perspective diagram of the ferrule, observed from the rear. The ferrule (
8
) further defines a tunnel (
83
) communicating with the fiber holes (
82
) on the front end surface. Beside the tunnel (
83
) are the through holes (
81
). The through holes (
81
) extend from the front end surface of the ferrule (
8
) to the rear end surface. Furthermore, the ferrule (
8
) defines a window (
84
) at its top surface. The window (
84
) communicates with the tunnel (
83
).
Referring to
FIG. 3
, the ferrule boot (
6
) has a rectangular body (
63
). The body (
63
) defines a through hole (
61
) and has a pair of cantilevers (
62
) protruding from its front surface.
Referring to
FIG. 4
, the pin holder (
5
) has a recess (
51
) on its bottom so that the pin holder (
5
) can sit on the ferrule boot (
6
) with the recess (
51
) containing the ferrule boot (
6
). The pin holder (
5
) defines two mounting holes (
52
) on both sides for containing the pins (
7
).
Referring back to
FIG. 1
, the spring (
4
) is a coiled spring.
The spring push (
3
) is constructed like a tube. However, the spring push (
3
) further has a pair of cantilevers (
32
) on its front end. Each cantilever (
32
) has an engaging portion (
31
). Furthermore, the rear end (
33
) of the spring push (
3
) is provided with threads.
The sleeve (
2
) has varying diameters. The front end of the sleeve (
2
) has a diameter greater than the rear end.
The boot (
1
) is constructed like a tube and is the rearmost part of the optical fiber connector.
The optical fiber connector is mounted at an end of an optical fiber cable to connect a light source, a detector or another optical fiber cable. Referring to
FIG. 5
, the optical fiber cable (
100
) includes, from out to in, a plastic cover (
110
), celvars (
120
), a plurality of resin layers (
130
) and a plurality of optical fibers (
140
) respectively covered by the plurality of resin layers (
130
).
A MT-RJ optical fiber connector and an optical fiber cable are assembled in accordance with the following process:
(Step 1) Referring to
FIG. 6A
, the boot (
1
) and the sleeve (
2
) are put around the plastic cover (
110
) of the optical fiber cable (
100
), without being fixed. An end of the optical fiber cable (
100
) is stripped to expose the celvars (
120
), resin layers (
130
) and optical fibers (
140
). Then, the spring push (
3
) and the spring (
4
) are put around the resin layers (
130
). Then, the spring push (
3
) is pushed backward to cover the plastic cover (
110
), with the celvars (
120
) held between the spring push (
3
) and the plastic cover (
110
). Thus, the spring push (
3
) is fixed to the optical fiber cable. Then, the optical fibers (
140
) are led through the through holes (
61
) of the ferrule boot (
6
), extending between the cantilevers (
62
).
(Step 2) As shown in
FIG. 6B
, the cantilevers (
62
) of the ferrule boot (
6
) are inserted into the tunnel (
83
) of the ferrule (
8
), with the optical fibers (
140
) further into the fiber holes (
82
) communicating the tunnel (
83
). The optical fibers (
140
) protrude from the front end surface of the ferrule (
8
).
(Step 3) AB glue is applied to the inside of the ferrule (
8
) through the window (
84
). Then, the ferrule (
8
) is baked so that the AB glue is solidified to fix the optical fibers in the ferrule (
8
).
(Step 4) The front end surface of the ferrule (
8
) is ground to remove the portions of the optical fibers protruding therefrom.
(Step 5) As mentioned above, a male connector has two pins (
7
) but a female connector has none. For the male connector, the rear ends of the pins (
7
) are fitted into the mounting holes (
52
) of the pin holder (
5
). Then, the pins (
7
) are inserted, towards the front, into the through holes (
81
) to protrude from the front end surface of the ferrule (
8
). Then, the pin holder (
5
) is mounted (sits) on the body (
63
) of the ferrule boot (
6
), with the spring (
4
) against the pin holder (
5
) and the spring push (
3
), as shown in FIG.
6
C. The female connector has no pins. Therefore, the pin holder (
5
) is directly mounted (sits) on the body (
63
) of the ferrule boot (
6
), with the spring (
4
) against the pin holder (
5
) and the spring push (
3
).
(Step 6) The ferrule (
8
) is put in the housing (
9
). Then, the spring push (
3
) is pushed forward so that the engaging portions (
31
) of the spring push (
3
) enter the holes (
91
) of the housing (
9
). Thus, the spring push (
3
) and the housing (
9
) are fixed together. Then, the sleeve (
2
) is pushed forward to cover the rear end (
33
) of the spring push (
3
) so that the celvars (
120
) are held between the sleeve (
2
) and the rear end (
33
) of the spring push (
3
). Generally, the celvars (
120
) are too long to be entirely covered by the sleeve (
2
). The exposed portion of celvars (
120
) is cut away. Then, the boot (
1
) is pushed to cover the sleeve (
2
) as shown in
FIG. 6D
, to finish the process of assembling the MT-RJ optical fiber connector.
Conventional MT-RJ optical fiber connectors have the following flaws:
The front end surface of the ferrule (
8
) is ground to remove the portions of the optical fibers protruding (Step 4). For a male connector, the pins (
7
) protrude from the front end surface of the ferrule (
8
) that obstructs the grinding operation. To solve the problem, the step of grinding the front end surface of ferrule (Step 4) precedes the step of assembling the pins (Step 5). However, each optical fiber is fragile. During the grinding operation, a section of the optical fiber (
140
) is protected only by the weak resin layer (
130
). The optical fiber is not strongly protected until the sleeve (
2
) is covered by the boot (
1
) (Step 6). Therefore, the workers need to carefully treat the optical fiber (
140
), preventing the optical fiber from breaking. This slows down the speed of assembling the connectors. Even so, optical fibers are broken from time to time, adversely affecting yield.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an optical fiber connector that solves the above-mentioned problem.
The optical fiber connector of the present invention includes a housing, a ferrule, two pins, a ferrule boot, a pin holder, a spring, a spring push, a sleeve and a boot assembled in series. The ferrule defines two through holes, and the pin holder defines two mounting holes aligned with the through holes, allowing the pins to be inserted through the through holes into the mounting holes.
The boot, sleeve, spring push, spring, pin holder, ferrule boot and housing are assembled as a piece. Then, the ferrule of the piece is ground. The pins are then inserted into the piece. The process keeps the pins from obstructing the grinding operation. As well, most parts are assembled before the grinding operation, to protect the optical fibers. This allows workers to handle the optical fibers, speeds the process and promotes yield.
REFERENCES:
patent: 6146024 (2000-11-01), Melchior
patent: 6200040 (2001-03-01), Edwards et al.
pa
Boutsikaris Leo
Dunn Drew
Troxell Law Office PLLC
U-Conn Technology Inc.
LandOfFree
Optical fiber connector assembled before grinding does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical fiber connector assembled before grinding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical fiber connector assembled before grinding will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3210163