Optical fiber coating device

Plastic article or earthenware shaping or treating: apparatus – Distinct means to feed – support or manipulate preform stock... – Female mold type means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S001250, C264S001270, C425S169000, C425S173000, C425S174400

Reexamination Certificate

active

06688870

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical fiber coating device suited to recoat a connecting portion of an optical fiber from which a coat has been removed.
2. Description of the Related Art
As one of methods for connecting two optical fibers to each other, there is a method in which after coatings on the end portions of the respective optical fibers have been removed, those end portions are confronted with each other and then fusion-spliced to each other. In the case where those optical fibers are connected to each other with this method, it is necessary to reinforce the end portions (connecting portions) of the respective optical fibers from which the coatings have been removed through some method. Therefore, up to now, the connecting portion is sandwiched between reinforcing members or is coated with heat shrinkable tubings. However, in order to cope with a high-density packaging of an optical device, it is idealized that an outer diameter of the connecting portion which has been reinforced is made identical with that from which the coating has not yet been removed. Under those circumstances, in recent years, attention has been paid to a method of recoating the connecting portion for reinforcement by an optical fiber coating device.
In the optical fiber coating device which is currently used to recoat the connecting portion of the optical fiber, a mold made up of an upper mold and a lower mold which can be separated from each other is mounted on a device body, and a shielding lid is rotatably fitted onto the device body. The connecting portion of the optical fiber is recoated by the optical fiber coating device in the following manner.
1) After the shielding lid is opened, the upper mold is opened and the connecting portion of the optical fiber is set in a recoat groove formed in an upper surface of the lower mold.
2) The upper mold is closed, and the recoat groove formed in a lower surface of the upper mold is confronted with the recoat groove of the lower mold to receive the connecting portion of the optical fiber between both of the recoat grooves.
3) The shielding lid is closed, and the mold is shielded from an external light.
4) A light-curing resin is injected into the recoat groove in which the connecting portion of the optical fiber is set. In this situation, if occasion demands, the shielding lid is opened and a state in which the light-curing resin is injected into the recoat groove is confirmed.
5) After the light-curing resin of a given amount has been injected into the recoat groove, a lamp fitted on an inner side of the shielding lid is lighted and a light is irradiated onto the light-curing resin from the lamp to cure the resin. Similarly, as occasion demands, the shielding lid is opened and a state in which the light-curing resin is cured is confirmed.
6) After the light-curing resin has been sufficiently cured, the shielding lid and the mold are opened, and the optical fiber is extracted from the mold.
The above conventional optical fiber coating device suffers from the following problem.
1) The large shielding lid must be troublesomely opened or closed every time the injecting state or the curing state of the light-curing resin is confirmed.
2) When the shielding lid is opened, a light-curing resin (for example, a resin remaining in a resin injection path or a resin supply pipe for injecting the resin into the recoat groove) other than the light-curing resin that is injected into the recoat groove is exposed to the external light. As a result, the resin thus exposed is cured to block the resin injection path or the resin supply pipe.
SUMMARY OF THE INVENTION
The present invention has been made to solve the above problems with the conventional optical fiber coating device, and therefore an object of the present invention is to provide an optical fiber coating device which is capable of observing the interior of a mold in a state where a shielding lid is closed.
In order to achieve the above object, according to one aspect of the present invention, there is provided an optical fiber coating device in which a coating removed portion of an optical fiber is set in a slender groove of a mold within a device body, a light-curing resin is injected into the slender groove, a light is irradiated onto the light-curing resin from a light source provided inside of a shielding lid which is fitted onto the device body in an openable and closable fashion to cure the light-curing resin, thereby recoating the coating removed portion, wherein there is provided an observation window through which the interior of the mold can be observed in a state where the shielding lid is closed.
According to another aspect of the present invention, there is provided an optical fiber coating device in which a coating removed portion of an optical fiber is set in a slender groove of a mold within a device body, a light-curing resin is injected into the slender groove, a light is irradiated onto the light-curing resin from a light source provided inside of a shielding lid which is fitted onto the device body in an openable and closable fashion to cure the light-curing resin, thereby recoating the coating removed portion, wherein there are provided an observation window through which the interior of the mold can be observed in a state where the shielding lid is closed, and an open/close lid that can open/close the observation window.
According to still another aspect of the present invention, there is provided an optical fiber coating device in which a coating removed portion of an optical fiber is set in a slender groove of a mold within a device body, a light-curing resin is injected into the slender groove, a light is irradiated onto the light-curing resin from a light source provided inside of a shielding lid which is fitted onto the device body in an openable and closable fashion to cure the light-curing resin, thereby recoating the coating removed portion, wherein there is provided an observation window through which the interior of the mold can be observed in a state where the shielding lid is closed, and an optical shielding guard plate is provided around the observation window.
According to yet still another aspect of the present invention, there is provided an optical fiber coating device in which a coating removed portion of an optical fiber is set in a slender groove of a mold within a device body, a light-curing resin is injected into the slender groove, a light is irradiated onto the light-curing resin from a light source provided inside of a shielding lid which is fitted onto the device body in an openable and closable fashion to cure the light-curing resin, thereby recoating the coating removed portion, wherein there are provided an observation window through which the interior of the mold can be observed in a state where the shielding lid is closed, and an open/close lid that can open/close the observation window, and an optical shielding guard plate is provided around the observation window.
According to yet still another aspect of the present invention, there is provided an optical fiber coating device in which a coating removed portion of an optical fiber is set in a slender groove of a mold within a device body, a light-curing resin is injected into the slender groove, a light is irradiated onto the light-curing resin from a light source provided inside of a shielding lid which is fitted onto the device body in an openable and closable fashion to cure the light-curing resin, thereby recoating the coating removed portion, wherein there are provided an observation window through which the interior of the mold can be observed in a state where the shielding lid is closed, and a photo sensor that can detect the quantity of light of the light source.
According to yet still another aspect of the present invention, there is provided an optical fiber coating device in which a coating removed portion of an optical fiber is set in a slender groove of a mold within a device body, a light-curing resin is injected into the slender

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical fiber coating device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical fiber coating device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical fiber coating device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3325643

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.