Optical fiber array and method of aligning optical fibers in...

Optical waveguides – Accessories – External retainer/clamp

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S120000, C029S850000

Reexamination Certificate

active

06690875

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to method and apparatus for providing an alignment of elements such as optical fibers in a predetermined array to a predetermined tolerance value.
BACKGROUND OF THE INVENTION
Fiberoptics is used in the communication industry for high levels of data transport. As a result, optical fibers need to be coupled with precision to semiconductors, detectors, and mirrors in arrays.
A method for obtaining precision accuracies is to use photolithography to image a mask of array openings on a substrate such as silicon. Silicon is chosen because it has a low thermal coefficient equal to that of silicon substrates that optical fibers match into. Using a photolithographic mask, the openings of the array are etched in the silicon wafers. For small openings such as those for 125 micrometer diameter single mode optical fibers which are nominally 124-126 micrometers in diameter, the cross-section of the etched opening in the silicon substrate is nominally 126 micrometers. There can be a variation in the size of the opening during etching or laser drilling. As a result, the openings can have variations in cross-section and, consequently, cause inaccuracies in the placement of optical fibers in the plane of the substrate.
It is desirable to provide an array of elements, such as optical fibers, in which alignment (i.e., center-to-center spacings of the elements) of an exemplary tolerance value of ±2.0 micrometers is repeatedly achievable and to have registration techniques to achieve such alignment accuracy for the elements.
SUMMARY OF THE INVENTION
The present invention is directed to method and apparatus for providing an alignment of an array of elements such as optical fibers to a preselected center-to-center tolerance value.
From a first apparatus aspect, the present invention is directed to an array apparatus comprising a primary substrate and a plurality of N elements. The primary substrate has sufficient structure to support an array of N spaced-apart elements and defines a plurality of N apertures which each extend therethrough from a first surface to a second opposing surface of the primary substrate with a cross-section of each of the N apertures being greater than a cross-section of an optical fiber and having a center that is aligned to a preselected tolerance value which is required for the array of elements. A smallest cross-section of each of the apertures is such that when the plurality of elements are inserted through their primary substrate apertures they have limited variations that facilitate spacings between adjacent elements that are within the preselected tolerance value. Each of the elements passes through one of the N apertures in the primary substrate and rests against the same one of a group consisting of a predetermined point and a predetermined side of its associated aperture such that the plurality of N elements are aligned within the preselected tolerance value.
From a second apparatus aspect, the present invention is directed to an optical fiber array apparatus comprising a primary substrate and a plurality of N optical fibers. The primary substrate has sufficient structure to support an array of N spaced-apart optical fibers and defines a plurality of N apertures which each extend therethrough from a first surface to a second opposing surface of the primary substrate with a cross-section of each of the N apertures being greater than a cross-section of an optical fiber and having a center that is aligned to a preselected tolerance value which is required for the array of optical fibers. A smallest cross-section of each of the apertures is such that when the plurality of optical fibers are inserted through their primary substrate apertures they have limited variations that facilitate spacings between adjacent optical fibers that are within the preselected tolerance value. Each optical fiber comprises a cladding layer surrounding an optical core, and when each optical fiber is inserted through its associated aperture in the primary substrate it is registered by a spring-like force in the optical fiber against one of a group consisting of a predetermined point and a predetermined side of its associated aperture which is the same for each of the plurality of N optical fibers and their associated apertures such that the plurality of N optical fibers are aligned within the preselected tolerance value.
From a third apparatus aspect, the present invention is directed to apparatus for registering a plurality of optical fibers in an optical fiber array comprising a primary substrate and a directing arrangement. The primary substrate has sufficient structure to support an array of N spaced-apart optical fibers and defines a plurality of N apertures in a predetermined pattern which each extend therethrough from a first surface to a second opposing surface of the primary substrate where each of the N apertures comprises a cross-section which is greater than a cross-section of an optical fiber, the apertures having centers that are aligned to a preselected tolerance value which is required for the array of optical fibers. A smallest cross-section of each of the apertures is such that optical fibers inserted through the primary substrate apertures have limited variations that facilitate spacings between adjacent optical fibers placed in the apertures being within the preselected tolerance value. The directing arrangement directs each of the plurality of N optical fibers at a predetermined angle towards the primary substrate so that each optical fiber is curved with a spring-like action after threading into the associated aperture in the primary substrate such that the optical fiber is registered against one of a group consisting of at least one of a predetermined point and a predetermined side of the associated aperture in the primary substrate.
From a fourth apparatus aspect, the present invention is directed to an array apparatus comprising a primary substrate and a plurality of N elements. The primary substrate has sufficient structure to support an array of N spaced-apart elements and defines a plurality of N apertures which each extend therethrough from a first surface to a second opposing surface of the primary substrate with a cross-section of each of the N apertures being greater than a cross-section of an element and having a center that is aligned to a preselected tolerance value which is required for the array of elements. A smallest cross-section of each of the apertures is such that when the plurality of elements are inserted through their primary substrate apertures they have limited variations that facilitate spacings between adjacent elements that are within the preselected tolerance value. When each element is inserted through its associated aperture in the primary substrate it is registered, by a spring-like force in the element, against one of a group consisting of a predetermined point and a predetermined side of its associated aperture which is the same for each of the plurality of N elements and their associated apertures such that the plurality of N elements are aligned within the preselected tolerance value.
From a fifth apparatus aspect, the present invention is directed to array apparatus comprising a relatively thick primary substrate and a relatively thin first layer. The relatively thick primary substrate has sufficient structure to support an array of N spaced-apart elements and has first and second opposing surfaces and defines a plurality of N primary substrate apertures which each extend therethrough from the first surface to the second surface with a cross-section of each of the N substrate apertures being greater than a cross-section of an element such that one element can be passed through in each of the N primary substrate apertures. The relatively thin first layer, which has insufficient structure by itself to support an array of N spaced-apart elements, engages the second surface of the primary substrate and defines N apertures therethrough with centers thereof being aligned to a pres

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical fiber array and method of aligning optical fibers in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical fiber array and method of aligning optical fibers in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical fiber array and method of aligning optical fibers in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3320428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.