Optical element containing an interference fringe filter

Optical: systems and elements – Light interference – Produced by coating or lamina

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S587000, C359S589000, C359S707000, C359S626000, C359S622000, C359S599000, C349S095000

Reexamination Certificate

active

06825983

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a diffuser for specular light. In a preferred form, the invention relates to a back light diffuser containing a light director for rear projection liquid crystal display devices.
BACKGROUND OF THE INVENTION
Optical structures that scatter or diffuse light generally function in one of two ways: (a) as a surface diffuser utilizing surface roughness to refract or scatter light in a number of directions; or (b) as a bulk diffuser having flat surfaces and embedded light-scattering elements.
A diffuser of the former kind is normally utilized with its rough surface exposed to air, affording the largest possible difference in index of refraction between the material of the diffuser and the surrounding medium and, consequently, the largest angular spread for incident light. However, some prior art light diffusers of this type suffer from a major drawback: the need for air contact. The requirement that the rough surface must be in contact with air to operate properly may result in lower efficiency. If the input and output surfaces of the diffuser are both embedded inside another material, such as an adhesive for example, the light-dispersing ability of the diffuser may be reduced to an undesirable level.
In one version of the second type of diffuser, the bulk diffuser, small particles or spheres of a second refractive index are embedded within the primary material of the diffuser. In another version of the bulk diffuser, the refractive index of the material of the diffuser varies across the diffuser body, thus causing light passing through the material to be refracted or scattered at different points. Bulk diffusers also present some practical problems. If a high angular output distribution is sought, the diffuser will be generally thicker than a surface diffuser having the same optical scattering power. If however the bulk diffuser is made thin, a desirable property for most applications, the scattering ability of the diffuser may be too low.
Despite the foregoing difficulties, there are applications where a surface diffuser may be desirable, where the bulk type of diffuser would not be appropriate. For example, the surface diffuser can be applied to an existing film or substrate thus eliminating the need for a separate film. In the case of light management in a LCD, this increases efficiency by removing an interface (which causes reflection and lost light).
Typically, prior art light diffusers for liquid crystal display devices utilize edge or perimeter printing of the light diffuser to direct light away from the edges of the display were the light is typically absorbed into the LCD frame. Light adsorbed into the LCD frame is lost light energy in that absorbed illumination light energy can not be used to illuminate the LC image. Prior art diffusers for LCD devices are typically printed with white, reflecting dots around the perimeter that provide specular reflection of perimeter light so that some of the perimeter light can be “recycled” by the illumination components away from the perimeter. While the printing of white reflective dots does reduce the amount of absorbed light energy by the LCD frame, perimeter printing is expensive in that it requires an additional printing operation. Further, the perimeter printing of the light diffuser has been generally shown to reduce edge absorption by 30%. It would be desirable to re-direct incident illumination light energy back toward the center of the device and further reduce the amount of wasted illumination light energy absorbed by device frames that utilize light diffusers.
In U.S. Pat. No. 6,270,697 (Meyers et al.), blur films are used to transmit infrared energy of a specific waveband using a repeating pattern of peak-and-valley features. While this does diffuse visible light, the periodic nature of the features is unacceptable for a backlight LC device because the pattern can be seen through the display device.
U.S. Pat. No. 6,266,476 (Shie et al.) discloses a microstructure on the surface of a polymer sheet for the diffusion of light. The microstructures are created by molding Fresnel lenses on the surface of a substrate to control the direction of light output from a light source so as to shape the light output into a desired distribution, pattern or envelope. The materials disclosed in U.S. Pat. No. 6,266,476 shape and collimate light and therefore are not efficient diffusers of light particularly for liquid crystal display devices.
It is known to produce transparent polymeric film having a resin coated on one surface thereof with the resin having a surface texture. This kind of transparent polymeric film is made by a thermoplastic embossing process in which raw (uncoated) transparent polymeric film is coated with a molten resin, such as polyethylene. The transparent polymeric film with the molten resin thereon is brought into contact with a chill roller having a surface pattern. Chilled water is pumped through the roller to extract heat from the resin, causing it to solidify and adhere to the transparent polymeric film. During this process the surface texture on the chill roller's surface is embossed into the resin coated transparent polymeric film. Thus, the surface pattern on the chill roller is critical to the surface produced in the resin on the coated transparent polymeric film.
One known prior process for preparing chill rollers involves creating a main surface pattern using a mechanical engraving process. The engraving process has many limitations including misalignment causing tool lines in the surface, high price, and lengthy processing. Accordingly, it is desirable to not use mechanical engraving to manufacture chill rollers.
The U.S. Pat. No. 6,285,001 (Fleming et al) relates to an exposure process using excimer laser ablation of substrates to improve the uniformity of repeating microstructures on an ablated substrate or to create three-dimensional microstructures on an ablated substrate. This method is difficult to apply to create a master chill roll to manufacture complex random three-dimensional structures and is also cost prohibitive.
In U.S. Pat. No. 6,124,974 (Burger) the substrates are made with lithographic processes. This lithography process is repeated for successive photomasks to generate a three-dimensional relief structure corresponding to the desired lenslet. This procedure to form a master to create three-dimensional features into a plastic film is time consuming and cost prohibitive.
In U.S. Pat. No. 6,030,756 (Bourdelais et al), a photographic element comprises a transparent polymer sheet, at least one layer of biaxially oriented polyolefin sheet and at least one image layer, wherein the polymer sheet has a stiffness of between 20 and 100 millinewtons, the biaxially oriented polyolefin sheet has a spectral transmission between 35% and 90%, and the biaxially oriented polyolefin sheet has a reflection density less than 65%. While the photographic element in U.S. Pat. No. 6,030,756 does separate the front silver halide from the back silver halide image, the voided polyolefin layer would diffuse too much light creating a dark liquid crystal display image. Further, the addition of white pigment to the sheet causes unacceptable scattering of the back light.
In U.S. Pat. No. 5,223,383 photographic elements containing reflective or diffusely transmissive supports are disclosed. While the materials and methods disclosed in this patent are suitable for reflective photographic products, the % light energy transmission (less than 40%) is not suitable for liquid crystal display as % light transmission less than 40% would unacceptable reduce the brightness of the LC device.
In U.S. Pat. No. 4,912,333, X-ray intensifying screens utilize microvoided polymer layers to create reflective lenslets for improvements in imaging speed and sharpness. While the materials disclosed in U.S. Pat. No. 4,912,333 are transmissive for X-ray energy, the materials have a very low visible light energy transmission which is unacceptable for LC devices.
In U.S. Pat. No. 6,177,153, oriente

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical element containing an interference fringe filter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical element containing an interference fringe filter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical element containing an interference fringe filter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3327099

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.