Optical disk system and method for storing disk- and...

Motion video signal processing for recording or reproducing – Local trick play processing – With randomly accessible medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C386S349000

Reexamination Certificate

active

06493506

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to optical disk systems, and in particular to optical disk systems which allow users to choose among a variety of playback viewing and listening options.
2. Description of the Related Art
Optical disks are recording media typically containing long strings of microscopic pits representing digitally encoded data. Each string of pits is called a “track”. The tracks are formed end to end in a spiral pattern around the center of one or both major surfaces of the disk. Reflected laser light is used to “read” the data encoded in the pits. Common types of optical disks available today include compact disks (CDs), laser video disks, and digital versatile disks (DVDs). Various optical disk players are available which read data from optical disks.
The current DVD standard is a compromise format agreed upon by several major consumer electronic and entertainment companies. Under the current DVD standard, the capacity of a single side, single layer DVD with a diameter of 4.7 inches is 4.7 gigabytes, enough to store about 135 minutes of video data. This capacity is sufficient for about 95% of all full length movies. The current DVD standard also provides for up to eight different sound tracks in different languages, each with up to eight different audio channels to create a three-dimensional acoustic effect. In addition, up to 32 different sets of subtitles (i.e., translation text) may be stored on a DVD for display during playback.
By virtue of the numerous capabilities afforded by the DVD standard, a typical DVD player allows a user to select among a wide variety of viewing and listening options. The user typically makes these selections by navigating through several layers of menus displayed upon a television (TV) screen. For example, viewing options include display format, camera angle, and subtitles. A standard TV has a width-to-height (i.e., aspect) ratio of 4:3, while a widescreen TV has an aspect ratio of 16:9. Video data can be stored on a DVD for standard TV (4:3 display data) or widescreen TV (16:9 display data). DVD player display format options include full frame (4:3 format from 4:3 display data), letterbox (4:3 format from 16:9 display data), pan & scan (4:3 format from 16:9 display data), and widescreen (16:9 format from 16:9 display data). In letterbox format, a wide black stripe is added across the tops and bottoms of the 16:9 display data images such that proper proportions are maintained when the images are displayed upon a 4:3 screen. In pan & scan format, only 4:3 portions of the 16:9 display data images are displayed. Images “shot” from several different camera angles may be recorded on the disk, and the user may select any one of these camera angles for viewing. Subtitles in any one of up to 32 different languages may be superimposed upon portions of the images.
Audio options include language, number of channels, dynamic range, and volume. The user may select one of up to 8 different languages for playback. The user may also select desired values for number of audio channels, dynamic range, and volume. As described above, each of the up to 8 sound tracks in different languages may have up to 8 audio channels. Audio data encoded using Dolby® AC-3™ may have 1 to 5.1 channels. Audio data encoded using MPEG-2 audio may have 1 to 5.1 or 7.1 channels. Audio data encoded using pulse code modulation (PCM) may have 1 to 8 channels. A user may select from the various audio options present on a disk.
Users may have different viewing and listening preferences. Each user's preferences, however, would not be expected to change significantly over time. As a result, a typical user will most likely grow tired of having to reselect the same viewing and listening preferences each time a presentation (e.g., a movie) is viewed. It would thus be beneficial to have an optical disk system which stores information specific to each optical disk and/or user. Such a system would conveniently allow a user to view a presentation, or to continue viewing an interrupted presentation, without having to reselect viewing and listening preferences.
SUMMARY OF THE INVENTION
The problems outlined above are in large part solved by an optical disk system and method for storing disk- and user-specific settings. One embodiment of the optical disk system includes a disk drive unit for retrieving identification data and encoded video data stored upon an optical disk, an input device for inputting user settings, and a microprocessor memory unit operably coupled to the disk drive unit and the input device and including a non-volatile portion for storing the identification data and the user settings. Information specific to optical disks (e.g., DVDs) and users is stored within the non-volatile portion of the microprocessor memory unit. Such information may be retrieved and invoked, conveniently allowing a user to view a presentation, or to continue viewing an interrupted presentation, without having to reselect viewing and listening preferences.
The identification data may include a portion of a title of the optical disk. A value corresponding to the identification data may be stored within the non-volatile portion of the microprocessor memory unit in order to minimize storage requirements. The value may be, for example, an error detection code (e.g., checksum) computed from the identification data stored upon the optical disk.
The non-volatile portion of the microprocessor memory unit may include, for example, flash memory or electrically erasable programmable random access memory (EEPROM) which maintains stored contents even in the absence of applied electrical power.
The input device may include a keypad having multiple electrical pushbutton switches or “keys”. The input device may be a “remote” control unit in wireless communication with the microprocessor (e.g., via an infrared light beam). A user may input user settings by pressing one or more of the keys of the keypad. The user settings may include, for example, spoken language, video display format, audio volume setting, and subtitle language.
The optical disk system may also include a microprocessor and an audio/video decoder. The microprocessor may be coupled to the disk drive unit and the microprocessor memory unit, and may be operably coupled to the input device. The microprocessor may receive the identification data from the disk drive unit and the user settings. The user settings may be retrieved from the non-volatile portion of the microprocessor memory unit. Alternately, the user input may be received via the input device.
The microprocessor may be configured to: (i) store the identification data and the user settings within the non-volatile portion of the microprocessor memory unit, and (ii) provide the identification data and the user settings. The audio/video decoder may be coupled to the disk drive unit and the microprocessor. The audio/video decoder may receive the encoded video data from the disk drive unit and the identification data and user settings from the microprocessor. The audio/video decoder may decode the encoded video data thereby producing decoded video data, and may produce image data (e.g., bit-mapped textual data) which reflects the identification data and the user settings. The audio/video decoder may produce a video output signal which includes the image data superimposed upon the decoded video data.
The microprocessor may maintain a table including disk identification data and disk specific settings (e.g., user settings and last stop playback location information) within the non-volatile portion of the microprocessor memory unit. The table may have multiple entry locations, wherein each entry location corresponds to a specific disk and has a disk identification field and a specific settings field. The specific settings field may be used to store the user settings and last stop playback information associated with the disk identified by the data within the disk identification field.
The microprocessor may also maintain a table including user spe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical disk system and method for storing disk- and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical disk system and method for storing disk- and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical disk system and method for storing disk- and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2982744

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.