Dynamic information storage or retrieval – Storage medium structure – Optical track structure
Reexamination Certificate
1999-08-04
2003-06-17
Edun, Muhammad (Department: 2655)
Dynamic information storage or retrieval
Storage medium structure
Optical track structure
C369S047280, C369S053200, C369S059100
Reexamination Certificate
active
06580680
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to the field of optical disk data storage and retrieval.
BACKGROUND OF THE INVENTION
The invention relates to an optical disc including a recording area for recording data at a substantially constant density. The recording area includes circular or spiral tracks provided with a servopattern including headers alternating with track portions. The headers are radially aligned and include position information, and the track portions are arranged for storing an amount of data substantially proportional to the radial position of the track portion concerned.
The invention further relates to a recording device for recording data at a substantially constant density on an optical disc having a recording area including circular or spiral tracks provided with a servopattern with headers alternating with track portions. The headers are radially aligned and include position information, and the track portions are arranged for recording an amount of data substantially proportional to the radial position of the track portion concerned. The recording device also includes a recording head, recording control apparatus and positioning apparatus for positioning the recording head on a track at a position to be recorded, and the positioning apparatus includes header detecting apparatus for retrieving the position information from the headers.
The invention further relates to a reading device for reading data from an optical disc recorded at a substantially constant density. The optical disc having a recording area including circular or spiral tracks provided with a servopattern including headers alternating with track portions. The headers are radially aligned and include position information, and the track portions include an amount of data substantially proportional to the radial position of the track portion concerned. The reading device also includes a reading head, reading control apparatus and positioning apparatus for positioning the reading head on a track at a position to be read, and the positioning apparatus includes header detecting apparatus for retrieving the position information from the headers.
Such a record carrier and apparatus are known from European Patent Application EP 0 587 019, herein document D
1
. The document discloses a record carrier in the form of an optical disc having a recording area including a pattern of grooves on a substrate, constituting a servopattern of circular or spiral tracks. The recording tracks are subdivided in longitudinal direction into track portions alternating with headers. The headers include position information, e.g. an address area including pre-recorded address marks. The headers are made during manufacture, e.g. in the form of so-called pre-pits formed by embossing. The address marks represent position information for positioning a recording head on a desired track and are indicative for the address of the recording area following the address area. In a direction transverse to the tracks, i.e. radially, the headers are aligned. The disc includes one track address and a fixed number of radially aligned servo pits in each turn, constituting a so-called sampled servo pattern. The servo pattern including radially aligned elements is called a Constant Angular Velocity (CAV) servo pattern, and is to be scanned by a servo system having a phase locked loop (PLL) to generate a servo frequency locked to the rotation frequency of the disc. The address marks are dimensioned to be read clocked by the servo frequency. Also, a data phase locked loop is provided for generating a data clock that is locked to a speed of data read/write operations, which are performed at a substantially constant linear density. Each track portion is arranged for recording an amount of data substantially proportional to the radial position of the track portion concerned. Hence, the density is substantially constant across the whole recording area, which corresponds to the well-known constant linear velocity (CLV) system. When jumping to a new radial position, the rotation frequency setting point or the data clock setting point are adjusted to the new position, but the servo phase locked loop remains locked to the CAV servo pattern. Hence the addresses in the headers can always be read at the servo frequency. The recording apparatus includes an optical system for recording or reading information by generating a spot via a radiation beam on a track of the record carrier. The optical disc is rotated and the spot is positioned in radial direction on the centre of the track by servo apparatus for scanning the track. During scanning, the servo phase locked loop is locked to the rotation frequency of the disc for reading the CAV servo pattern. The data phase locked loop is locked to the CLV data speed. The known record carrier and apparatus have the problem, that for reliable operation a first phase locked loop must be locked to the CAV servo pattern, and a second phase locked loop must be locked to the CLV data density.
Those skilled in the art are also directed to U.S. Pat. No. 4,901,300 herein document D
2
.
The above references are hereby incorporated herein in whole by reference.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an optical disc, a recording device, and a reading device arranged for a more reliable data recording and/or retrieval operation while data is recorded at a substantially constant density.
An optical disc according to the invention, has position information the is provided substantially at the constant density. Thus, the headers are positioned on locations corresponding to a CAV pattern, but have an information content readable by the data clock. There is no need for a second phase locked loop, only one phase locked loop locked to the data frequency is required. Hence, the recording is less complex and more reliable. This is also advantageous in that, the space required for the header pattern is reduced when compared to a CLV header pattern, as shown, for example, in FIG.
2
and described below. Hence, the header overhead is reduced, which increases the effective data storage capacity of the disc.
A recording device according to the invention, has header detecting means arranged for reading the position information substantially at the constant density. A reading device according to the invention, has header detecting means arranged for reading the position information substantially at the constant density. Thus, the headers, although positioned corresponding to a CAV servo pattern, can be read by reading apparatus synchronized to the same data clock as used for data recorded in the track portion adjoining the header. This is advantageous in that, only one phase locked loop is required to generate the data clock locked to the data speed.
The invention is also based on the following recognition relating to the overhead and reduced data storage capacity incurred by applying headers. Headers in the servo pattern are used to indicate the location of data to be recorded, which data is usually subdivided into logical units called sectors. For example, document D
1
describes a zoned disc having in each zone a fixed number of data sectors fitting in one turn of the track and one header per turn, the first sector starting at the one header. In our invention, several headers are required in one turn for fast access to the data after a jump to a new radial position, because otherwise, the device would have to wait maximally almost a full rotation of the disc before a header can be read. In known disc formats, such as DVD-RAM and shown in
FIG. 2
, a number of headers per turn is used in a CLV pattern, i.e. aligned with the sectors and therefore a radially outward increasing number of headers per turn of the track. A relative large header overhead is caused by the CLV header pattern. According to our invention, a number of headers in each turn being aligned radially in a CAV servo pattern allow fast recovery of the radial and angular position of the scanning unit. A high average density of data recor
Akiyama Yoshiyuki
Arai Masayuki
Bakx Johannus L.
Kobayashi Shoei
Spruit Johannes H. M.
Belk Michael E.
Edun Muhammad
Koninklijke Philips Electronics , N.V.
LandOfFree
Optical disc and apparatus for scanning the optical disc does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical disc and apparatus for scanning the optical disc, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical disc and apparatus for scanning the optical disc will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3135908