Optical device employing edge-coupled waveguide geometry

Optical waveguides – Temporal optical modulation within an optical waveguide – Electro-optic

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

385 8, 385 1, 385 14, G02F 1035

Patent

active

057296413

ABSTRACT:
An optical device for modulating or interacting with radiation guided and propagating along an optical longitudinal axis of an optical waveguide, such as, an optical fiber, has a different directional geometry compared to conventionally comparable devices such as, for example, plasmon or planar surface modulators for optical fibers. The geometry includes a nonlinear, electro-optic medium formed between two spatially disposed electrodes. The medium/electrode sandwich is aligned along the waveguide longitudinal propagating axis and extends in a radial direction from the optical waveguide core with the inner end of the medium in spatial proximity to the waveguide core for evanescent coupling with the radiation field propagating in the waveguide. An applied electric field to the spatially disposed electrodes varies the refractive index of the electro-optic medium from just below the effective refractive index of the waveguide to just above the effective refractive index waveguide to induce a lossy condition on the propagating radiation. Modulation of the applied electric field will bring about intensity modulation of the propagating radiation.

REFERENCES:
patent: 4786132 (1988-11-01), Gordon
patent: 4807982 (1989-02-01), Jaeger et al.
patent: 4925269 (1990-05-01), Scrivener
patent: 4948225 (1990-08-01), Rider et al.
patent: 4971426 (1990-11-01), Schildkraut et al.
patent: 5007695 (1991-04-01), Chang
patent: 5060307 (1991-10-01), El-Sherif
patent: 5067788 (1991-11-01), Jannson et al.
patent: 5133037 (1992-07-01), Yoon et al.
patent: 5185823 (1993-02-01), Kaku et al.
patent: 5359678 (1994-10-01), Heismann et al.
patent: 5444723 (1995-08-01), Chandonnet et al.
R. A. Bergh et al. entitled, "Single Mode Fibre Optic Directional Coupler", Electronic Letters, vol. 16(7), pp. 260-261, Mar. 27, 1980.
C. D. Hussey et al. entitled "Optical Fibre Polishing With a Motor Driven Polishing Wheel", Electronics Letters, vol. 24(13), pp. 805-807, Jun. 23, 1988.
C.Y. Cryan et al., entitled "Overcoming the Effects of Polishing Induced Stress When Fabricating Fused Polished Couplers", Electronics Letters, vol. 29(14), pp. 1243-1244, Jul. 8, 1993.
R. Ulrich entitled, "Theory of the Prism-Film Coupler by Plane-Wave Analysis", Journal of the Optical Society of America, vol. 60(10), pp. 1337-1350, Oct., 1970.
A. Chandonnet et al. entitled, "All Fibre Intensity Modulator for Q-Switching", SPIE Proceedings, Section of Mode-Locked and Solid State Lasers, Amplifiers, and Applications, vol. 2041, 282-290, Aug. 17-19, 1993, Quebec, Canada.
J. c. Quail et al. entitled, "Long Range Surface Plasmon Modes in Silver and Aluminum Films", Optics Letters, vol. 8(7), pp. 377-379, Jul., 1983.
J. S. Schildkraut entitled, "Long-Range Surface Plasmon Electrooptic Modulator", Applied Optics, vol. 27(21), pp. 4587-4590, Nov. 1, 1980.
W. Johnstone et al. entitled, "Surface Plasmon Polaritons in Thin Metal Films and Their Role in Fiber Optic Polarizing Devices", Journal of Lightwave Technology, vol. 8(4), pp. 538-544, Apr., 1990.
M. N. Zervas entitled, "Surface Plasmon Polariton Fiber Optic Polarizers Using Thin Nickel Films", IEEE Photonics Technology Letters, vol. 2(4), pp. 253-256, Apr., 1990.
K. Thyagarajan et al. entitled, "Thin Metal Clad Waveguide Polarizers: Analysis and Comparison With Experiment", Optics Letters, vol. 15(18), pp. 1041-1043, Sep. 15, 1990.
S. Pilevar et al. entitled, "Analysis of Dual Metal Coated In-Line Fiber Optic Polarizer", Journal of Optical Communication, vol. 12, pp. 22-25, (191) no month.
K. Welford entitled "Tutorial Review-- Surface Plasmon-Polaritons and their Uses", Optical and Quantum Electronics, vol. 23, pp. 1-27, (1991) no month.
D. A. Ender et al. entitled "Polymeric and Organic Crystalline Films for Electro-Optic Applications", SPIE Proceedings of Nonlinear Optical Porperties of Organic Materials, vol. 971, pp. 144-153, (1988); no month.
R. Lytel et al. entitled, "Organic Electro-Optic Waveguide Modulators and Switches", SPIE Proceedings of Nonlinear Optical Properties of Organic Maaterials, vol. 971, pp. 218-229, (1988); no month.
G. T. Boyd entitled, "Appications Requirements for Nonlinear Optical Devices and the Status of Organic Materials", Optical Society of America B, vol. 6(4), pp. 685-692, Apr. 1989.
G. H. Cross et al. entitled, "Polymeric Integrated Electro-Optic Modulators", SPIE Proceedings of Integrated Optics and Optoelectronics, vol. 1177, pp. 79-91, (1989) no month.
K. D. Katz et al. entitled, "Second Order Nonlinear Optical Devices in Poled Polymers", SPIE Proceedings of Nonlinear Optical Properties of Organic Materials II, vol. 1147, pp. 233-244, (1989) no month.
W. Johnstone et al. entitled, "Fibre Optic Modulators Using Active Multimode Waveguide Overlays", Electronics Letters, vol. 27(11), pp. 894-896, May 23, 1991.
M. Wilkinson et al. entitled, "Optical Fibre Modulator using Active Electro-Optic Polymer Overlay", Electronics Letters, vol. vol. 27(11), pp. 979-981, May, 1991.
Y. Shuto et al. entitled, "Electrooptic Light Modulation and Second Harmonic Generation in Novel Diazo Dye-Substituted Poled Polymers", IEEE Photonics Technology Letters, vol. 3(11), pp. 1003-1006, Nov. 1991.
G. Fawcett et al. entitled, "In-Line Fibre Optic Intensity Modulator Using Electro Optic Polymer", Electronics Letters, vol. 28(11), pp. 985-986, May 21, 1992.
M. J. F. Digonnet et al., "Measurement of the Core Proximity in Polished Fiber Substrates and Couplers", Optic Letters, vol. 10(9), pp. 463-465, Sep., 1985.
Ajoy K. Ghatak et al. entilted, "Numerical Analysis of Planar Optical Waveguides Using Matrix Approach", Journal of Lightwave Technology, vol. LT-5(5), pp. 660-667, May , 1987.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical device employing edge-coupled waveguide geometry does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical device employing edge-coupled waveguide geometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical device employing edge-coupled waveguide geometry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-965360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.