Optical composite and method of making same

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S275700, C156S245000, C156S228000, C264S001270

Reexamination Certificate

active

06797104

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for making a composite optical material. More particularly, the present invention provides a method for producing an optically correct composite for use in ophthalmic lens production, bulletproof glass, Plexiglas, windshields, and fiber optics.
2. Description of Related Art
Composite optical materials have been used for many years because of the benefits (optically, structurally, or both) compared to a optical material made from single, uniform substance. Various methods have been used to create composite optical materials ranging from simply gluing different optical materials together to ion sputtering, and vapor or chemical deposition.
In ophthalmic lens production chemical deposition and ion sputtering are used to apply coatings to ophthalmic lenses. Also in the ophthalmic lens industry, anti-reflective coatings are routinely applied by vapor deposition to all types of ophthalmic lenses.
Optical fibers consist of a silica fiber core, cladding, buffer coating, and sheath. The core is usually fused silica, 5-600 gmm or larger in diameter; the larger the core, the more light the fiber can carry. Depending on the fiber and the application, plastic fibers and fibers with different kinds of glass and core diameters are available. These fibers include those that are optimized to carry near-IR, IR, or UV and visible radiation from traditional spectroscopic light sources as well as the intense high-power light from lasers.
The cladding, a thin layer of glass, plastic, or polymer coating with an index of refraction lower than the core, surrounds the core. The function of the cladding is to reflect light back into the core as it moves down the fiber. The buffer coating is a plastic or a polymer that protects the core and cladding from moisture, scratches, and other contamination while imparting additional strength to the fiber.
Claddings are usually silica, but other glasses, silicone, and other polymers may be used, however, the refractive index must be lower than the core to allow light to propagate through the fiber. Because polymer claddings can be removed with a suitable solvent, fibers with polymer-based claddings can be used for applications requiring the internal reflectance properties of the bare fiber in an application called evanescent wave spectroscopy. Such claddings are generally applied in expensive vacuum chambers using plasma-enhanced chemical deposition, the applications reported in the literature and publicized by vendors or users appear to be the tip of the iceberg. In addition, vendor confidence and continued development of fiber-optic-based technologies for spectroscopy are indications that the chemical and chemical process communities are focusing on the technology. However, a shortcoming of the previous claddings, buffer coatings, and sheaths is the expense of their application.
Bulletproof glass, like all polycarbonate products, though strong is prone to optical aberrations. In addition, it is soft and thus must be bonded to another optical material to prevent it from scratching. Its optical clarity is reduced even further when it is laminated to the usual one or more sheets of glass. Also, polycarbonate's low Abbe number makes light dispersion an inherent problem. A related laminated product, windshields, suffers from the same optical limitation. In lamination, the poor optical nature of the interlayer always reduces the final product's optical clarity. Thus, a shortcoming of windshields is that they have poor optical clarity. Because this reduction in optical clarity is accentuated by curvature, another shortcoming of the lamination process is that it limits the resulting bulletproof glass and windshield composites to relatively flat shapes. Further, a shortcoming of the polycarbonate ophthalmic lens industry is that polycarbonate lenses while light, strong and ultraviolet protective, scratch relatively easily, are prone to chemical damage from cleaners, and have relatively poor optics.
What is needed therefore is a way to provide claddings and buffer coatings more cheaply. It would also be desirable to make polycarbonate products such as bullet-proof glass and ophthalmic lenses more scratch resistant, have better optical quality, and even be photochromic by bonding it to the finest optical material known, glass. And, finally, it would also be desirable to allow for curved windshields and to increase passenger safety by allowing the use of cheaper, high tensile strength multi-layered windshields.
SUMMARY
In accordance with the present invention, methods and a composition are provided for producing an optical composite with the optical clarity and scratch-resistance of a glass and the tensile strength of a polymer. In addition, the present invention also provides an optical composite with the optical clarity of a glass, yet protected by the tensile strength of a polymer.
The present invention includes a glass and polymer composite composed of a glass having a shape, a center, a margin; the plastic has a center, a shape adapted to receive the shape of the glass, and a margin; a sealant is disposed between the margin of the glass and the margin of the plastic, whereby the central portions of the glass and the plastic are devoid of the sealant.
The present invention includes having the glass contain metallic compounds selected from the group consisting of silver salts, copper salts gold, palladium, cadmium chalcogenides, noble metal colloids, and ferrites.
The present invention also includes a method of forming a glass and plastic composite using optical contacting to hold the glass and plastic portions together using microwave radiation.
The present invention also includes a method of enhancing the kinetic reaction strength of a sealant using microwave radiation.
The present invention also includes having the glass be photochromic.
The present invention also includes having the plastic, in whole or in part, be selected from the group consisting of polycarbonate, polyurethane, polystyrene, fluorocarbon and polymethylmethacrylate.
The present invention also includes having the sealant be selected from the group consisting of silicones, shellac and lacquer, silane coupling agents, disilyl crosslinker compounds, epoxy resins, crosslinkable polyethylene vinylacetate terpolymer, polyvinyl butyral and polysulfide.
The present invention also includes having the glass and plastic be transparent and refractive.
The present invention also includes having the margin of the glass having at least one appendage and the margin of the plastic defining an aperture shaped for receiving the appendage of the glass.
The present invention also includes having the margin of the plastic having at least one appendage and the margin of the plastic defining an aperture shaped for receiving the appendage of the plastic.
The present invention also includes having the percentage of glass in the composite be between about 0.01 to 99.99%.
The present invention also includes having a microwave-transparent spring-loaded vice adapted to hold together the glass and the plastic.
The present invention also includes having a vice whose spring tension is between about 0.01 to 200 foot pounds.
The present invention also includes having a weighted microwave-transparent, vice adapted to hold together the glass and the plastic.
The present invention also includes having a vice whose holding weight is between about 0.01 to 100 pounds.
The present invention also includes a method of forming a glass and plastic composite by forming a glass having a margin and a center to a particular shape; then forming a plastic having a margin and a center to a shape essentially adapted to receive the shape of the glass; then applying sealant only to the margin of the glass and the margin of the plastic, whereby the center of the glass and the center of the plastic are devoid of the sealant; then placing together the glass and the plastic; then placing the glass and plastic into a vacuum chamber; then applying vacuum

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical composite and method of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical composite and method of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical composite and method of making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3268108

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.