Optical component having a flat top output

Optical waveguides – With optical coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S037000

Reexamination Certificate

active

06614951

ABSTRACT:

BACKGROUND
1. Field of the Invention
The invention relates to one or more optical networking components. In particular, the invention relates to optical components having a flat top output.
2. Background of the Invention
The wavelength division multiplexing technique allows a waveguide to carry more than one channel of information in a multichannel beam of light. Each channel is carried on a light signal having a unique wavelength.
A demultiplexer is typically employed to separate the channels in a multichannel beam. Separating the channels allows the channels to be independently processed. The demultiplexer receives the multichannel beam on an input waveguide and outputs each of the channels on a different output waveguide. Accordingly, each output waveguide is typically associated with a particular channel.
The intensity versus wavelength profile of the light in each output waveguide typically peaks at the wavelength associated with a particular channel. However, the wavelengths of light that appears on a particular output waveguide can shift. For instance, temperature changes can affect the index of refraction of materials in the demultiplexer. This change in the index of refraction can cause the wavelengths of light that appear on an output waveguide to shift. This shift can cause the intensity distribution seen on a particular output waveguide to shift away from the peak in the intensity versus wavelength profile. As a result, these shifts can cause a drop in the intensity of the signal in a particular output channel. This drop in the intensity is a source of optical loss in the optical network.
For the above reasons, there is a need for a demultiplexer that is not associated with optical losses that result from a shift in the wavelengths of light that are provided on a particular output waveguide.
SUMMARY OF THE INVENTION
The invention relates to an optical component. The optical component is configured to receive a light signal through an inlet port and distribute the light signal across an output side. The light distribution component is configured such that a light signal received through the inlet port with a non-periodic intensity distribution is distributed across the output side with a periodic intensity distribution. The periodic intensity distribution function can substantially approximate a sinc function. In some instances, the light distribution component is defined in a light transmitting medium positioned on a base.
The optical component can include a plurality of array waveguides configured to receive the light signal distributed across the output side of the light distribution component. The optical component can also include an input waveguide connected to the inlet port.
Another embodiment of the optical component includes a plurality of array waveguides defined a light transmitting medium positioned on a base, the array waveguides being defined such that each array waveguides has an inlet port. The optical component also includes a light distribution component defined in the light transmitting. The light distribution component is configured to receive a light signal through an inlet port and to distribute the light signal to the inlet ports of the array waveguides. The light distribution component is also configured such that a light signal received through the inlet port with a non-periodic intensity distribution is distributed to inlet ports of the array waveguides with a periodic intensity distribution.
Another embodiment of the optical component includes an array waveguide grating having a plurality of array waveguides. The optical component also includes an light distribution component configured to receive a light signal through an inlet port and distribute the light signal to a plurality of the array waveguides. The optical component further includes an output light distribution component configured to receive the light signal distributed to the array waveguides. The light distribution component is configured such that a light signal received through the inlet port with a non-periodic intensity distribution is received in the output light distribution component with a periodic intensity distribution. The period intensity distribution can have a shape that approximates a sinc function.
In some instances, the output light distribution component is configured to focus the received light signal on one or more output waveguides.
The optical component can include a light signal carrying region extending through the light distribution component. One or more obstructions are positioned in the light signal carrying region. The one or more obstructions are configured to obstruct a portion of the light signal traveling through the light signal carrying region. The one or more obstructions can include one or more columns extending through the light signal carrying region. In some instances, one or more columns are each a column of air. The one or more obstructions can define an opening through which the light signal can travel.
The optical component can include a collimator for collimating the light signal. The collimator can be positioned between the collimator and the inlet port. In some instances, the collimator is included in an input waveguide that ends at the inlet port.
The invention also relates to a method of operating an optical component. The method includes receiving a light signal through an inlet port of a light distribution component and distributing the light signal across an output side of the light distribution component such that the light signal. The method also includes diffracting the light signal such that the light signal is distributed across the output side with a substantially sinc shaped intensity distribution. The light distribution component can be defined in a light transmitting medium positioned on a base.


REFERENCES:
patent: 4618210 (1986-10-01), Kondo
patent: 4747654 (1988-05-01), Yi-Yan
patent: 4813757 (1989-03-01), Sakano et al.
patent: 4846542 (1989-07-01), Okayama et al.
patent: 5002350 (1991-03-01), Dragone
patent: 5013113 (1991-05-01), Soref
patent: 5039993 (1991-08-01), Dragone
patent: 5243672 (1993-09-01), Dragone
patent: 5412744 (1995-05-01), Dragone
patent: 5450511 (1995-09-01), Dragone
patent: 5467418 (1995-11-01), Dragone
patent: 5581643 (1996-12-01), Wu
patent: 5633747 (1997-05-01), Nikoonahad
patent: 5706377 (1998-01-01), Li
patent: 5841931 (1998-11-01), Foresi et al.
patent: 5938811 (1999-08-01), Greene
patent: 6023545 (2000-02-01), Eldada et al.
patent: 6108478 (2000-08-01), Harpon et al.
patent: 6118909 (2000-09-01), Chen et al.
patent: 6334013 (2001-12-01), Laming et al.
patent: 0647861 (1995-04-01), None
patent: 0985942 (2000-03-01), None
patent: 63-197923 (1988-08-01), None
patent: 2-179621 (1990-07-01), None
patent: 6-186598 (1994-07-01), None
Abe, et al., Optical Path Length Trimming Technique using Thin Film Heaters for Silica-Based Waveguides on Si, Electronics Letters, Sep. 12, 1996, vol. 32-No. 19, pp. 1818-1820.
Albert, J., Planar Fresnel Lens Photoimprinted in a Germanium-Doped Silica Optical Waveguide, Optics Letters, May 15, 1995, vol. 20-No. 10, pp. 1136-1138.
Aman, M.C., Calculation of Metal-Clad Ridge-Waveguide (MCRW) Laser Modes by Mode Coupling Technique, Journal of Lightwave Technology, vol. LT-4, No. 6, Jun. 1986, pp. 689-693.
Amann, M.C. et al, Calculation Of The Effective Refractive-Index Step For The Metal-Cladded-Ridge-Waveguide Laser, Applied Optics, vol. 20, No. 8, Apr. 15, 1981, pp. 1483-1486.
Baba, S. et al., A Novel Integrated-Twin Guide (ITG) Optical Switch with a Bull-in TIR Region; IEEE Photonics Technology Letters, vol. 4, No. 5, May 1992, p. 486-488.
Benson, T.M., Etched-Wall Bent-Guide Structure for Integrated Optics in the III-V Semiconductors; Journal of Lightwave Technology, vol. LT-2, No. 1, Feb. 1984; p. 31-34.
Berry, G.M. et al., Analysis Of Multilayer Semiconductor Rib Waveguides With High Refractive Index Substrates, Electronics Letters, vol. 29, No. 22; Oct. 28, 1993; p. 1941-1942.
Betty, I. et al., A Robust, Low-Crosstalk, InGaAsP/InP Total-Internal-Reflection

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical component having a flat top output does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical component having a flat top output, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical component having a flat top output will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3074593

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.