Optical compensatory sheet producing method and apparatus,...

Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S118000, C427S072000, C427S073000

Reexamination Certificate

active

06812982

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical compensatory sheet producing method and apparatus, thermal treating method and apparatus, and dust removing method and apparatus. More particularly, the present invention relates to an optical compensatory sheet producing method and apparatus in which an optical compensatory sheet can be obtained with high quality for good contrast and color in a liquid crystal display unit, and thermal treating method and apparatus, and dust removing method and apparatus for the optical compensatory sheet.
2. Description Related to the Prior Art
A liquid crystal display unit (LCD) is characterized in having a shape with a small thickness, being lightweight and using low electric power in comparison with a cathode ray tube (CRT) to display an image. LCD is used widely as a component incorporated in a portable type of word processor and a desk-top type of personal computer. In LCD, twisted nematic liquid crystal is used. In general, LCD include a liquid crystal cell and a pair or polarizing plates between which the liquid crystal cell is disposed. The liquid crystal cell is constituted by a liquid crystal panel and an electrode for applying voltage to the liquid crystal panel. Furthermore, the liquid crystal panel includes transparent orientation layers and a liquid crystal layer sandwiched between the orientation layers. To display an image in LCD, there are two modes include a birefringence mode and an optically rotary mode.
A super twisted nematic LCD (hereinafter referred to as STN-LCD) utilizing the birefringence mode uses a super twisted nematic liquid crystal showing a twisted angle more than 90 degrees and having steep electro-optical characteristics. Such STN-LCD, therefore, has an advantage of giving display data of a large size by driving in time-sharing mode. However, the STN-LCD has disadvantages in providing good contrast only when set in the yellow mode (yellowish green/deep blue) or blue mode (blue/pale yellow). A phase difference plate (uniaxial stretched polymer film or compensatory liquid crystal cell) is required to give black-and-white display.
TN-LCD, when set in an optically rotary mode, shows quick response (as quick as several tens of milliseconds) and high display contrast. Hence, the optical rotary mode has a number of advantages compared with the birefringence mode or other modes. However, TN-LCD has disadvantages that color or contrast on display varies with changes in viewing angle to LCD, and its display characteristics are not comparable to display characteristics of CRT.
In order to improve the viewing angle characteristics (i.e., to enlarge the viewable angle), arrangement of a phase difference film (optical compensatory sheet) between a pair of polarizing plates and the liquid crystal cell has been known. The optical compensatory sheets show no optical effect when an LCD is seen in the direction vertical to the screen of the display because phase difference in the direction perpendicular to the surface of LCD is almost zero. However, the optical compensatory sheet serves to compensate for phase difference (depending upon wavelengths of light) that occurs when LCD is viewed in an oblique direction.
JP-A 6-075115, U.S. Pat. No. 5,506,706 (corresponding to JP-A 6-075116), and JP-A 4-276076 disclose an optical compensatory sheet having the negative birefringence and inclined optical axis. In more detail, the disclosed sheet is produced by stretching polymer such as polycarbonate or polyester, and has the directions of the main refractive indices which are inclined from the normal of the sheet. To prepare the above sheet by the stretching treatment, extremely complicated treatments are required. Therefore, an optical compensatory sheet of a large surface are cannot be easily produced according to the disclosed process.
Also, an optical compensatory sheet comprising liquid crystalline polymer is known. For instance, U.S. Pat. No. 5,064,697 (corresponding to JP-A 3-009326) and JP-A 3-291601 disclose an optical compensatory sheet for LCD which is prepared by applying a coating of polymer showing liquid crystal property on an orientation layer provided on a support film. However, polymers having a liquid crystalline property have a shortcoming in low productivity and are unsuitable for mass production, because it needs orientation by ripening for a long time at high temperature. JP-A 5-215921 discloses the use of a birefringence plate (optical compensatory sheet) comprising a support and a polymerizable rod-like compound showing liquid crystal property and positive birefringence. The birefringence plate is prepared by applying a coating of solution of the rod-like compound to the support and curing the compound with heat. The cured layer of the prior document, however, does not show negative birefringence. Hence, the resulting compensatory sheet cannot enlarge satisfactorily the viewing angle in all directions.
U.S. Pat. No. 5,646,703 (corresponding to EP-A 0 646 829) discloses an optical compensatory sheet greatly enlarging the viewing angle in all directions. The optical compensatory sheet has a representative structure comprising a transparent support, an orientation layer thereon, and a layer of discotic liquid crystalline compound provided on the orientation layer.
To produce an optical compensatory sheet with a large area, a transparent resin film with a large area must be coated with a discotic liquid crystal compound in a state substantially free from defects. So it has been conceived to reduce the number of the defects in consideration of enlarging LCD.
To produce the optical compensatory sheet, a rubbing process rubs a surface of a resin layer overlaid on the resin film for forming an orientation layer by use of a rubbing sheet (of fabric). This creates dust such as minute particles of resin. The dust becomes collectively stuck on a surface of the orientation layer, to create the defects (uneven orientation or local failure in orientation) in an oriented state of a liquid crystal layer of the optical compensatory sheet. When LCD is provided with the optical compensatory sheet, the defects occur in a display state. To avoid failure in removal of dust, the rubbing sheet about a rubbing roller should be exchanged and renewed frequently. However, there is a problem in that occurrence of the defects gradually becomes frequent according to dust. Furthermore, renewal of the rubbing sheet must be periodical, and inconsistent to continuous operation of the manufacture.
JP-A 9-073081 discloses a producing method of an optical compensatory sheet. Transparent resin film in a continuous shape is coated with solution including resin for forming an orientation layer, then is subjected to a rubbing process. So the orientation layer is formed, then is coated with solution including discotic liquid crystalline compound. Then the coating is dried. The resin film is thermally treated next. The resin film is heated to discotic nematic forming temperature, to form a liquid crystal layer oriented at a predetermined angle of an orientation axis.
In
FIG. 18
, an example of thermal treating apparatus is depicted. There are plural air blow openings
102
disposed above and below resin film
101
as web, and arranged in an alternate manner with one another. The air blow openings
102
supply hot air, blow both surface of the resin film
101
, and apply heat thereto. Exhaust openings
103
are opposed to respectively the air blow openings
102
, and ejects the hot air from the resin film
101
.
In the optical compensatory sheet, the liquid crystal layer must be oriented according to an orientation axis previously intended.
In the thermal treating apparatus according to the prior art, it is likely that offsetting of an orientation axis occurs in a width direction of the discotic liquid crystal layer. If the offsetting of the orientation axis is over a tolerable range, portions of the resin film must be discarded. There are problems in that yield of products of the optical compensatory sheet

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical compensatory sheet producing method and apparatus,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical compensatory sheet producing method and apparatus,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical compensatory sheet producing method and apparatus,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3300928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.