Optical cable fiber provided with a non-migrating antioxidant

Optical waveguides – Optical transmission cable – Loose tube type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S102000, C385S114000, C523S173000

Reexamination Certificate

active

06424771

ABSTRACT:

TECHNICAL FIELD
This invention relates to an optical fiber cable provided with a stabilized waterblocking material. More particularly, the invention relates to a cable provided with a dripless, non-bleeding, optical fiber coating-compatible and stabilized waterblocking material that fills interstices in a core of the cable.
BACKGROUND OF THE INVENTION
In the cable industry, it is well known that changes in ambient conditions lead to differences in water vapor pressure between the inside and the outside of a plastic cable jacket. This generally operates to diffuse moisture in a unidirectional manner from the outside of the cable to the inside of the cable. Eventually, this will lead to an undesirably high moisture level inside the cable, especially if a plastic jacket is the only barrier to the ingress of the moisture. High levels of condensed moisture inside a cable sheath system may have a detrimental effect on the transmission characteristics of a metallic conductor cable.
Optical fiber cables have made great inroads into the communications cable market. Although the presence of water itself within an optical fiber cable is not necessarily detrimental to its performance, passage of the water along the cable interior to connection points or terminals or associated equipment inside closures, for example, may cause problems. In both cases, under freezing conditions, the performance of optical fiber deteriorates quickly.
Furthermore, water may enter the cable because of damage to the cable that compromises its integrity. For example, rodent attacks or mechanical impacts may cause openings in the sheath system of the cable to occur, allowing water to enter, and, if not controlled, to move longitudinally along the cable into splice closures.
In the prior art, various techniques have been used to prevent the ingress of water through the sheath system of a cable and along the core. For example, a metallic shield, which often times is used to protect a metallic conductor cable against lightning and rodent attacks, is provided. However, the forming of a shield about a cable core requires the use of relatively low manufacturing line speeds. Also, the use of a metallic shield is destructive of the otherwise all-dielectric property of an optical fiber cable. Further, lightning strikes may cause holes in a metallic shield.
It is common to include provisions in addition to or as an alternative to a metallic shield for preventing the ingress of water into the core. Waterblocking materials have been used to fill cable cores and to coat portions of cable sheath systems to prevent the movement longitudinally thereof of any water which enters the cable. Such a material typically is referred to as a filling material. In optical fiber cables, a further important function of a filling material is the maintenance of the optical fibers in a low stress state.
As taught in the prior art, U.S. Pat. No. 5,187,763, issued to C. F. Tu, a cable filling material, especially an optical fiber cable filling material, should meet a variety of requirements. Among them is the requirement that the physical properties of the cable remain within acceptable limits over a rather wide temperature range, e.g., from about −40° to about 76° C. It is desirable that the composition of matter of the filling material be substantially free of syneresis, i.e., have an ability to retain uniform consistency over the temperature range. Generally, syneresis is controlled by assuring dispersion of an adequate amount of colloidal particles or other gelling agent. Other desirable properties of the compositions include thermal oxidation resistance.
Suitable waterblocking materials in use must yield under strains experienced when the cable is made or handled. Otherwise, movement of the optical fibers within the cable would be prevented and the fibers would buckle because they contact, with a relative small periodicity, a surface of the unyielding filling material. The smaller the periodicity of the fibers when contacting such an unyielding surface, the greater becomes a loss that is referred to as microbending loss.
Typically, microbending loss in optical fiber cables is more difficult to control at long wavelengths than at short ones. Thus, the requirements on the mechanical properties of a fiber cable filling material are typically substantially more severe for cable that is to be used at 1.55 &mgr;m, for example, than they are if the cable is to be used at shorter operating wavelengths of 1.3 &mgr;m, for example. Although, it has been found that some prior art filling materials perform quite satisfactorily at wavelengths up to about 1.3 &mgr;m, it has also been found that this is often not the case at longer wavelengths.
Because silica-based optical fibers typically have their lowest losses at or near the 1.55 &mgr;m wavelength, there is great interest in operating optical fiber telecommunication systems at approximately that wavelength. Thus, it is important to have available filling compositions for optical fiber cable that has no significant cabling-induced losses at long wavelengths, including about 1.55 &mgr;m.
Filling compositions for use in optical fiber cables should have a relatively low shear modulus, G
e
. However, it has been determined that, at least for some applications, a low value of G
e
of the filling material is not sufficient to assure low cabling loss, and that a further parameter, the critical yield stress, &sgr;
c
, needs to be controlled because it also affects the optical performance of fibers in a cable with a filling material.
Oil separation is a property of a grease-like material, which describes the tendency of the material to bleed oil during its lifetime. What is desired is a filling material which has an oil separation no greater than 5% when centrifuged at a rotational speed equivalent to a relative centrifugal force of about 26,000 G for two hours.
Incorporating a block copolymer into the grease-like composition of matter allows a reduction of the amount of colloidal particles that has been added to the mixture to prevent syneresis of the gel. This reduction can result in cost savings. Furthermore, it makes possible the formulation of less bleeding compositions having a very low critical yield stress.
Waterproofing filling materials for use in cables also must pass industry standard drip tests. To pass these tests, filling materials in cable cores must be retained as cable samples, suspended vertically, and subjected to specified elevated temperatures. Some prior art materials, which have been used, perform satisfactorily with respect to microbending and associated losses, but they bleed out excessively and have problems in meeting current drip tests. Also, it is desired that the low mean added losses exhibited by some prior art filling materials, at least be met by filling materials which pass the drip test and have suitable low temperature properties.
The viscosity of the sought-after filling material also is important with respect to processing. Because cable drip is related to oil separation, constraints on the sought-after filling material include oil separation, critical yield stress and viscosity. These constraints usually are antagonistic to each other. For example, a reduction of oil separation and an increase in cable drip temperature require high viscosity and yield stress whereas to facilitate processing and to reduce optical loss requires low viscosity and yield stress.
Another problem relating to filled optical fiber cables is the compatibility of the filling material with some coating materials, which are disposed about drawn optical fiber to protect the optical fiber. If compatibility is lacking, the performance and/or the appearance of the optical fiber could be affected adversely. The compatibility of otherwise suitable prior art filling materials with some coating materials, particularly those which are relatively soft, is something less than desired.
The filling composition of matter is one which includes an oil constituent, and which is a relatively high molecular weight

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical cable fiber provided with a non-migrating antioxidant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical cable fiber provided with a non-migrating antioxidant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical cable fiber provided with a non-migrating antioxidant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2851424

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.