Optical beam-shaping system

Optical: systems and elements – Single channel simultaneously to or from plural channels – By surface composed of lenticular elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S622000, C359S621000, C359S619000

Reexamination Certificate

active

06212011

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an optical beam-shaping system with optical elements arranged in a radiation bundle, said elements having lens arrays each having a plurality of lenses each sensing partial radial bundles, whereby the surfaces of said lenses are shaped into an optically active interface of a monolithic refractive element.
2. The Prior Art
Optical beam-shaping systems generally are arrangements of optical elements by which a bundle of rays of light irradiated upon such elements is modified in a defined way with respect to its beam parameters. It is required in the main cases of practical application that a bundle of rays has a defined geometric shape and size with respect to its cross section, for example a circular, rectangular or lattice-like shape or the like, and/or an intensity distribution defined across its cross section. Both properties frequently have to be influenced simultaneously, for example if the light source delivering the incoming bundle of rays for the beam-shaping system supplies a bundle of rays with irregular intensity distribution and irregular geometric dimensions, but defined specifications have to be satisfied for the outgoing bundle of rays of the beam-shaping system with respect to its properties.
According to the state of the art, optical beam-shaping systems are known from EO 0 232 037 A2 in which a bundle of light rays can be irradiated into the system with irregular energy distribution, whereby their outgoing bundle of rays has a uniform intensity distribution over its cross section. Such beam-shaping systems are referred to also as homogenizers.
In addition to conventional optical elements such as, for example collecting lenses with positively curved, i.e. convex boundary surfaces, which detect the total cross section of the admitted bundle of rays, said homogenizer also has so-called lens arrays, which are composed of lenses which each only sense a part of the cross section of the beam, i.e., partial radial bundles.
A design has successfully gained acceptance in connection with optical homogenizers where cylinder lens arrays that are crossed relative to each other are arranged in the path of the rays. Said arrays are partly still assembled from individual cylinder lens elements; however, simple plane cylinder lens arrays are already available as well, which are ground from a monolithic block of glass or plastic.
However, with such monolithic optical elements as known according to the prior art, it has been possible heretofore to exclusively realize only homogenizers which additionally require the use of additional optical elements such as lenses or the like. However, in order to obtain not only an intensity distribution that has been made uniform over the cross section as with the homogenizer, but to also shape a defined intensity profile in a defined geometric from starting out from incoming bundles of rays of any shape, it is necessary according to the state of the art to first homogenize the incoming beam in order to then interconnect additional beam-shaping systems in the further course of the beam. It is known, for example, to preset an intensity profile by employing absorption filters or masks. A geometric shaping of the beam is accomplished by inserting correspondingly shaped masks in the path of the beam.
The drawback of the aforementioned geometric and intensity beam-shaping systems is obvious: the by far predominating part of the admitted radiation energy is absorbed in filters or in the impermeable regions of the masks and consequently no longer available as light energy in the outgoing bundle of rays. In the practical application of beam-shaping systems according to the state of the art, more than 90% of the energy irradiated into the system is lost in this way. The overall efficiency of such systems is consequently poor.
Furthermore, the known optical beam-shaping systems including the aforementioned homogenizers are assembled in each case from a multitude of structural optical elements, with the result that their manufacture and adjustment are complicated and costly.
SUMMARY OF THE INVENTION
Starting out from the relevant state of the art the object of the invention is to solve the aforementioned problems and in particular to make available an optical beam-shaping system which, combined with the possibility of influencing the beam parameters, has superior efficiency and a simpler structure.
For achieving this object the invention provides that the interface has a curved basic shape.
The invention starts out from the finding that the plane lens arrays employed in the beam-shaping systems known heretofore, and the other optical components, for example imaging lenses and the like, can be integrated in one single or in just a few monolithic optical elements. Said monolithic refractive elements as defined by the invention are characterized in that the optically active interfaces, for example the surfaces of a lens on the inlet and outlet sides form a curved basic shape, the surface of which is quasi modulated, i.e., superposed with the smaller lens surfaces of the individual lenses of a lens array.
In addition to the obvious advantage that it is possible in this way to drastically reduce the number of structural elements employed, for example by combining all structural elements used heretofore in a homogenizer in one single monolithic element, there arises a further advantage which now becomes available only through such monolithic integration, to begin with: due to the shaping and alignment of the lens array in any desired way, taking into account the curved basic shape, it is possible for the first time to preset through such shaping almost any desired influencing of the beam parameters with respect to geometry and intensity distribution, i.e., to quasi program such influencing in the monolithic element. Since no absorbing structural elements such as filters or masks are employed for this purpose, high degrees of efficiency are achieved as compared to the prior art. As a rule, the absorption losses will be negligibly low in this connection.
The realization of the desired properties, which includes targeted influencing of all beam parameters, does required in the individual case a certain expenditure in terms of calculations for determining the interface geometry. However, such expenditure is of no great negative consequence in view of the available computer capacity. On the contrary, it is minor in light of the further advantage that the monolithic optical elements as defined by the invention require no further adjustments after their manufacture and, furthermore, cannot gel out of adjustment in the course of time.
The invention basically makes it possible to combine the separate structural elements required heretofore for an optical beam-shaping system in one single optical element, in each case in an advantageous way. It may be useful and advantageous for said purpose depending on the individual case if the basic shape of a surface disposed in the path of light, i.e., the interface of the monolithic optical elements is concave or convex, and provided with a spherical, aspherical or also cylindrical shape. The lens surfaces of the lenses of a lens array shaped into the surface of said basic shape themselves again may be concave or convex, and spherical, aspherical or also cylindrical.
The interface, i.e., the basic shape may be both rotation-symmetric or elliptic, or it may have any other conceivable geometric form. This applies to the individual lenses of a lens array as well. For example, strip-like lenses can be shaped into a quadrangular basic surface, or facet-like lenses may be arranged rotation-symmetrically on a rotation-symmetric—e.g. circular—or elliptic basic shape.
According to preferred further developments of the invention, provision is made that the individual lenses of a lens array have different focal lengths and/or different apertures. The intensity in the focus can be modulated by the measures in such a way that it is possible, for example to preset Ga

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical beam-shaping system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical beam-shaping system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical beam-shaping system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2462453

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.