Optical assaying method and system having movable sensor...

Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S225000, C250S559220, C250S559400, C250S491100, C356S317000, C356S318000, C356S365000, C356S367000, C356S329000, C356S426000, C356S427000, C356S428000, C356S931000, C422S051000, C422S051000, C422S051000, C422S051000, C422S082050, C422S082110, C435S287100, C435S287200, C435S288700, C435S808000, C436S164000, C436S165000, C436S524000, C436S527000, C436S531000, C436S805000

Reexamination Certificate

active

06277653

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of optical sensing, and more particularly to an optical assaying method and system having a moving sensor.
BACKGROUND OF THE INVENTION
Extremely sensitive optical sensors have been constructed by exploiting an effect known as surface plasmon resonance (SPR). These sensors are capable of detecting the presence of a wide variety of materials in concentrations as low as picomoles per liter. SPR sensors have been constructed to detect many biomolecules including keyhole limpet hemocyanin, &agr;-fetoprotein, IgE, IgG, bovine and human serum albumin, glucose, urea, avidin, lectin, DNA, RNA, HIV antibodies, human transferrin, and chymotrypsinogen. Additionally, SPR sensors have been built which detect chemicals such as polyazulene and nitrobenzenes and various gases such as halothane, trichloroethane and carbon tetrachloride.
An SPR sensor is constructed by sensitizing a surface of a substrate to a specific substance. Typically, the surface of the substrate is coated with a thin film of metal such as silver, gold or aluminum. Next, a monomolecular layer of sensitizing material, such as complementary antigens, is covalently bonded to the surface of the thin film. In this manner, the thin film is capable of interacting with a predetermined chemical, biochemical or biological substance. When an SPR sensor is exposed to a sample that includes the targeted substance, the substance attaches to the sensitizing material and changes the effective index of refraction at the surface of the sensor. Detection of the targeted substance is accomplished by observing the optical properties of the surface of the SPR sensor.
The most common SPR sensor involves exposing the surface of the sensor to a light beam through a glass prism. At a specific angle of incidence, known as the resonance angle, a component of the light beam's wavevector in the plane of the sensor surface matches a wavevector of a surface plasmon in the thin film, resulting in very efficient energy transfer and excitation of the surface plasmon in the thin film. As a result, at the resonance angle the amount of reflected light from the surface of the sensor changes. Typically, an anomaly, such as a sharp attenuation or amplification, is exhibited by the reflected light and the resonance angle of an SPR sensor can be readily detected. When the targeted substance attaches to the surface of the sensor, a shift in the resonance angle occurs due to the change in the refractive index at the surface of the sensor. A quantitative measure of the concentration of the targeted substance can be calculated according to the magnitude of shift in the resonance angle.
SPR sensors have also been constructed using metallized diffraction gratings instead of prisms. For SPR grating sensors, resonance occurs when a component of the incident light polarization is perpendicular to the groove direction of the grating and the angle of incidence is appropriate for energy transfer and excitation of the thin metal film. As with prism-based sensors, a change in the amount of light reflected is observed when the angle of incidence equals the resonance angle. Previous SPR grating sensors have incorporated square-wave or sinusoidal groove profiles.
Another highly-sensitive sensor that has been recently developed is known as a “diffraction anomaly” sensor. Diffraction anomaly sensors include a substrate and a thin metal layer which are substantially the same as in an SPR grating sensor. In a diffraction anomaly sensor, however, a dielectric layer is formed outwardly from the metal layer and protects the metal layer from oxidation and general degradation. Typically, a sensitizing layer is formed outwardly from the dielectric layer. Diffraction anomaly sensors, like SPR sensors, exhibit a change in reflectivity, referred to as a diffraction anomaly, when exposed with a light beam at a particular angle of incidence. Unlike conventional SPR sensors, diffraction anomaly sensors exhibit a change in reflectivity for light polarized parallel to the grooves of the substrate. When a light beam has an angle of incidence equal to the diffraction anomaly angle for the sensor, the diffracted light beam propagates within the dielectric layer. In this manner, the dielectric layer acts as a waveguide and a change in reflectivity is readily detected by the controller. The diffraction anomaly is directly affected by the thickness of the dielectric layer. The effective index of refraction at the surface of the diffraction anomaly sensor changes in a manner similar to an SPR sensor when the diffraction anomaly sensor is smeared with a sample containing the targeted substance. Furthermore, the change in the diffraction anomaly angle is strongly dependent upon the amount of targeted substance present in the sample. In this manner, the diffraction anomaly sensor exhibits a shift in the anomaly angle that is comparable to an SPR sensor, even though the metal grating of the diffraction anomaly sensor is coated with a dielectric layer. Therefore, a quantitative measure of the targeted substance can be calculated by measuring the resulting shift in the anomaly angle.
In addition to individual sensors, there is considerable commercial interest in multiple-sensor systems that are capable of detecting a variety of targeted substances, such as certain odors, vapors, gases and other chemical species, in a surrounding environment or sample. By utilizing several sensors, such sensing systems are capable of simultaneously detecting several targeted substances. Other multiple-sensor systems utilize multiple sensors to recognize the presence of a single targeted substance. In this configuration, the burden of recognition does not lie upon a single sensor, but rests on the sensing system's ability to properly interpret and recognize output patterns of the multiple sensors. Due to the use of multiple sensors, conventional multiple-sensor sensing systems are typically extremely expensive. Furthermore, conventional sensing systems are inherently complicated and therefore are not very portable.
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an inexpensive, disposable sensing system which can assay a variety of substances in a sample. There is also a need for such a system that is compact, easy to manufacture and readily transported.
SUMMARY OF THE INVENTION
As explained in detail below, the present invention is directed to an optical assaying method and system having a movable sensor. In one aspect, the invention is a system for sensing a plurality of substances. The system includes a sensor having a plurality of sensitized regions, wherein each region is sensitized to at least one of the substances. A detector is responsive to light received from the sensitized regions of the sensor. A motor is coupled to the sensor for moving the sensor such that each sensitized region moves proximate to the detector. A controller is coupled to the detector for calculating a measure of at least one substance as a function of a detected change in light received from the sensitized regions of the sensor.
According to one aspect of the invention, the sensor of the sensing system is a rotating sensing disk driven by the motor. For example, in one embodiment the sensing system includes a sensor disk having a substrate coated with a plurality of indicator dyes sensitized to the plurality of substances. In this embodiment, the detector is responsive to spectral changes in light received from one or more of the indicator dyes.
In another embodiment the sensor of the sensing system is a constant grating sensor disk having a grooved substrate and a metal layer formed outwardly from the substrate. Furthermore, a dielectric layer is formed outwardly from the metal layer for suppressing reflection of incident light having a polarization parallel to the grooves of the substrate. In this embodiment, th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical assaying method and system having movable sensor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical assaying method and system having movable sensor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical assaying method and system having movable sensor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2539002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.