Optical array and collimated light distribution

Optical waveguides – Noncyclindrical or nonplanar shaped waveguide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S901000, C349S062000

Reexamination Certificate

active

06775460

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a high-intensity light generation engine and associated light transmission apparatus for transmitting the light generated by the engine to a remote location. The invention is especially applicable for use in constructing a back lighted display, such as a liquid crystal display (LCD), of minimal thickness. In particular, the invention achieves a display of minimal thickness by separating the light source from the display mechanism. Such a display is most suited for use in high ambient lighting conditions where space is at a premium, such as in the cockpit of an aircraft. The inventive light generation engine and associated light transmissive apparatus may also be used for other applications besides illuminating a display, such as for projection displays, ground vehicle instrument displays, automotive lighting (such as headlights, tail lights, panel lights, map lights, and dome lights), airport runway lights, aircraft interior lighting, and street lights.
2. Background Art
Typically, high luminance displays (e.g. those used in avionics applications) are based upon transmissive liquid crystal displays (LCDs) with one or more fluorescent lamps. When packaged in a reflecting cavity and supplemented by light control films, such lamps can be driven at sufficient power levels to generate enough lumens to produce well in excess of 200 fL out of the transmissive LCD. Typically, these displays are at least three inches thick when combined with a minimal amount of electronics. As more electronics are added to increase functionality, display thickness increases correspondingly. Additionally, for avionics applications, the active display area must occupy a large percentage of the overall enclosure area since instrument panel space is at a premium. This further complication increases packaging density, and as the packaging density increases, the thermal design obviously becomes more critical. Beyond approximately 0.1 watts per cubic inch, active cooling should be employed, which is generally fan-based, thus further increasing volume.
There exists a desire to drive the display thickness to less than one inch for many applications, such as avionics. For avionics applications, this would facilitate upgrading a cockpit with new displays requiring minimal modification of the cockpit instrument panel and surrounding structural members. Obsolete displays may be removed and replaced by new displays, including those which relate to the present invention, that simply attach over the existing instrument panel. Most avionics displays protrude in front of an instrument panel by no more than one inch. This limitation is due to several factors, such as the need to preclude one display from shadowing another. Another consideration is that displays cannot protrude into the ‘ejection envelope’ in fighter and attack planes and also cannot interference with the controls used by a crewmember (such as, for example, limiting full travel of the control yoke).
To achieve high luminance, high contrast, and high resolution in a conventional display intended for high ambient lighting conditions, considerable display thickness and relatively high-intensity light sources are required. However, thick displays and the large amounts of heat generated by high intensity lamps are adverse to certain applications, such as those for the cockpit of an airplane.
In view of the foregoing, this invention provides a display system in which the light source is located remotely from a display device, such as an LCD, and its backlight. By separating the lamp, driving electronics and other components from the display device and locating them remotely, space requirements can be satisfied without violating the severe envelope restrictions for aircraft cockpit-suitable display system elements.
This invention also provides a high-intensity light engine comprising a light source and a light collection assembly, and an optical transmission apparatus for transmitting the light to a remote location, such as to a display device.
SUMMARY OF THE INVENTION
The present invention is directed to a high-intensity light generation engine and associated light transmission apparatus for transmitting the light generated by the engine to a remote location. The invention is especially applicable for use in constructing a back lighted display, such as a liquid crystal display (LCD), of minimal thickness, i.e., one-inch or less. A display of minimal thickness is achieved by separating the light source and other peripherals from the display device. Accordingly, the light source and other light transmissive apparatus are comprised in a remote enclosure. Such a display is most suited for use in high ambient lighting conditions where space is at a premium, such as in the cockpit of an aircraft. The inventive light generation engine and associated light transmissive apparatus may also be used for other applications such as projection displays, ground vehicle instrument displays, automotive lighting, airport runway lights, aircraft interior lighting, and street lights.
In accordance with an illustrative embodiment of this invention, a system for illuminating a display, such as a flat panel display (i.e. an LCD) is provided. Several of the systems functional elements are illustratively listed below:
A light source for generating light.
A light collection assembly for collecting the light generated by the light source and for providing one or more light outputs. The light-collecting assembly comprises at least one ellipsoidal mirror, and preferably eight ellipsoidal mirrors, for reflecting the light generated from the light source to corresponding exit port holes.
A light guide assembly for collecting light from the light output(s) and transmitting it to a common exit port.
An optional dimmer for providing a controllable variable attenuation of the light emitted by the light guide assembly common exit port.
A homogenizer for capturing potentially non-uniform light from the optional dimmer or, alternatively, directly from the light guide assembly common exit port, and for providing a uniform irradiance across the homogenizer exit port area. The irradiance across the exit port area generated by the homogenizer also has uniform spectral and angular characteristics. Note that the homogenizer is preferably tapered, where its input port is larger than its output port.
A fiber optic cable assembly for capturing light from the homogenizer exit port and distributing it to multiple exit ports.
A collimator element assembly. Each collimator element captures light from a corresponding light distribution means exit port and projects light with improved collimation.
A turn-the-corner assembly that captures the collimated light projected by the collimator elements and reverses its propagation direction in a space-efficient manner while maintaining collimation.
A waveguide backlight that captures the collimated light from the turn-the-corner assembly and projects it in the direction normal to the backlight exit face.
A liquid crystal display (LCD) that transmits the collimated light projected by the backlight while modulating it spatially and, in non-monochrome applications, spectrally across the LCD area to form an image.
A view screen that transmits the light projected by the LCD while decollimating (or diffusing) it to project the LCD image to be seen over a wide range of viewing angles.
As an aspect of this embodiment, the system further comprises one or more optical light pipes (e.g., a solid cylindrical rod or, alternatively, a square or rectangular cross section solid rod), where each light pipe is coupled to a respective exit port hole of the light-collecting assembly. The light pipes reduce heat concentrations and ultraviolet radiation, generated by the light-collecting assembly, which would otherwise be fully dissipated in the light guides leading to the homogenizer. The light pipes are preferably made of a visible light transparent heat-tolerant material, such as glass, fused silica or sapphire

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical array and collimated light distribution does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical array and collimated light distribution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical array and collimated light distribution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280312

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.