Optical apparatus

Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06507022

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates to an optical apparatus for examining an object and in particular but not limited to an optical apparatus for examining carbohydrate constituents in a plant.
BACKGROUND OF THE INVENTION
Current methods for optically examining objects such as strawberries and other plants require obtaining samples of the objects and examining the samples in laboratories. These methods are inconvenient as the apparatuses for examination cannot be used on the objects in situ or in the fields. They are also destructive as samples must be taken off the objects.
The existing optical apparatuses for the examination do not have the resolution nor the sensitivity which are sufficiently high for reliably examining constituents in fruits or plants in general. They also cannot be easily adapted for examining relative concentrations of the constituents.
These apparatuses have a light source arranged to direct light onto an object and a light detector arranged for detecting reflected or scattered light from the object. The detector must be positioned outside the light path of the source and at some distance from the object in order not to interfere with the light from the source.
The detectors of these prior art apparatuses receive light reflected off the surface of and light scattered from within the object, together with reflected and scattered light from other surfaces. The light received by the detectors therefore include a high degree of noise signals.
The prior art apparatuses also require a relatively high powered light source as a large amount of the light from the source do not reach the target regions of the object.
OBJECT OF THE INVENTION
An object of the present invention is to alleviate or to reduce to a certain degree one or more of the prior art disadvantageous.
SUMMARY OF THE INVENTION
In one aspect the present invention resides in an optical apparatus for examining an object. The apparatus comprises a light source adapted to direct a beam of light towards an object under examination, an aperture arranged for receiving the light reflected from, scattered within or passing through the object and, for the beam of light to diverge therefrom means for collimating light arranged so that the beam of light through the aperture incident thereat is collimated. The apparatus also comprises means for dispersing the collimated beam of light from the collimating means into wavelength components, and means for providing electrical output signals which are respectively proportional to energy levels in the wavelength components.
In preference, the apparatus further comprises means for processing the output signals and thereby providing one or more indication signals for respectively indicating one or more characteristics of the object.
An indication means can be arranged for receiving the one or more indication signals and indicating the or each said indication signals in a suitable form. Desirably the indication means is a printer, a display monitor or a combination thereof.
The apparatus may have an interface means to which a computer may be selectively connected thereto for storing the one or more indication signals and/or for further processing the one or more indication signals.
Typically the processing means includes a data correlation device adapted to relate the or each of said indication signals to a characteristic of the object.
The data correlation device may have a set of correlation data for one object or a plurality of sets of correlation data for different types of objects.
Each said characteristic may be any constituent or a relative concentration of any constituent of the object. Examples of the constituents are carbohydrates, starch and sugars including sucrose, glucose, fructose and the like. The characteristic may also relate to any physiological state of the object The physiological states may include growth state, maturity state in plant and the like.
Desirably each said characteristics is a signature of vigour of growth, maturity for picking or any other physiological state of a plant.
Conveniently the data correlation device is removably connectable to the apparatus so that the apparatus can be selectively connected to the data correlation device having a set of correlation data for a particular object under examination.
The data correlation device may conveniently be in the form of a printed circuit card such as a PCMCIA card.
Preferably the output signal providing means includes an detection arrangement for detecting the wavelength components.
It is further preferred that the apparatus has a focusing arrangement for focusing the wavelength components onto the detection arrangement.
The light source may include an illuminator for producing an annulus of light onto the object. The illuminator comprises a hollow body having a reflective interior surface, and one or more lamps disposed so that at least some portions of the light from said one or more lamps are reflected from the reflective surface. The reflective surface is configured so that the light reflected therefrom forms an annulus of light on a region of the object.
In preference said hollow body is substantially conical or half egg shell shaped. The hollow body may also have a substantially parabolic cross section.
Suitably the annulus of light is arranged around a light detection probe for detecting scattered light from said object. The detection probe is suitably positioned along an axis of the hollow body and the light source is positioned at an angle to said axis.
Advantageously the illuminator is provided with a shroud downstream of the light reflected from said reflective surface. In one from the shroud is substantially frusto-conical or curvilinear in shape
The shroud may have a partly or wholly reflective interior surface for redirecting portions of the light from said light source and/or said interior surface of the body to said region of the object.
The shroud may have a rear wall arranged to direct light towards the annulus. The rear wall may be curve shaped or formed as a Fresnel lens.
It is desired that the shroud is removably fixed so that it can be easily replaced. The shroud may be configured for a particularly shaped object. The illuminator can therefore be used for different objects by selecting suitable shrouds for the different objects.
It is also preferred that the apparatus comprises an optical conveying means for conveying the beam of light reflected from or through the object to the aperture. The conveying means may include an optical fibre such as a 500 &mgr;m diameter optical fibre with a 11° numerical opening. The optical fibre may be arranged within a protective probe.
The aperture can be positioned at about the focal length of the collimating means. It may have one or more parallel slits of a suitable width. In one example the width is 10 &mgr;m. Typically the one or more slits are vertically oriented.
Desirably, the position of the collimating means relative to the aperture is adjustable so that the desired resolution and intensity of the apparatus can be easily changed.
Suitably, the collimating means is a collimating lens and typically an achromatic lens.
The dispersing means may include one or more prisms of any suitable configuration. The one or more prisms are preferably equilateral prism(s).
The focusing arrangement may include one or more focusing lenses for focusing the wavelength components onto the detection arrangement. Desirably the one or more focusing lenses are configured so that a linear dispersion of the spectrum can be provided across the detection arrangement. Plano-convex lenses are examples of the focusing lenses.
The detection arrangement preferably includes a plurality of detection elements which provide the electrical output signals in response to detection of the wavelength components.
More preferably the detection elements are arranged in a matrix of at least 2×2 (4) detection elements. Typically the matrix has 32×32 (2048) or 64×64 (4096) detection elements.
The detection arrangement conveniently

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3022429

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.