Optical: systems and elements – Optical amplifier
Reexamination Certificate
2006-03-07
2006-03-07
Hellner, Mark (Department: 3663)
Optical: systems and elements
Optical amplifier
C398S175000
Reexamination Certificate
active
07009760
ABSTRACT:
Optical regenerators are disclosed, one of which includes a splitter having an input signal input, and first and second outputs, where the first output is connected to a first input of an optical flip-flop that also includes an output. A first OAND gate includes a first input connected to the output of the optical flip-flop, and also includes a second input and an output. A second OAND gate has a first input connected to the second output of the splitter, and includes a second input and an output. A variable oscillator having an input and an output is arranged so that the output is connected to the second input of the second OAND gate and to the second input of the first OAND gate. Finally, a feedback controller has an input connected to the second OAND gate output, and an output connected to the variable oscillator input.
REFERENCES:
patent: 3467906 (1969-09-01), Cornely et al.
patent: 3828231 (1974-08-01), Yamamoto
patent: 4794346 (1988-12-01), Miller
patent: 5299054 (1994-03-01), Geiger
patent: 5305412 (1994-04-01), Paoli
patent: 5436759 (1995-07-01), Dijaili et al.
patent: 5604628 (1997-02-01), Parker et al.
patent: 5754571 (1998-05-01), Endoh et al.
patent: 5761228 (1998-06-01), Yano
patent: 5771320 (1998-06-01), Stone
patent: 5778132 (1998-07-01), Csipkes et al.
patent: 5805322 (1998-09-01), Tomofuji
patent: 5831752 (1998-11-01), Cotter et al.
patent: 5999293 (1999-12-01), Manning
patent: 6061156 (2000-05-01), Takeshita et al.
patent: 6115517 (2000-09-01), Shiragaki et al.
patent: 6128115 (2000-10-01), Shiragaki
patent: 6317531 (2001-11-01), Chen et al.
patent: 6333799 (2001-12-01), Bala et al.
patent: 6335992 (2002-01-01), Bala et al.
patent: 6456417 (2002-09-01), Maywar et al.
patent: 6477300 (2002-11-01), Watanabe et al.
patent: 6532091 (2003-03-01), Miyazaki et al.
patent: 6775481 (2004-08-01), Janz et al.
patent: 56006492 (1981-01-01), None
Alcatel, “Alcatel Optronics Introduces a Gain-Clamped Semiconductor Optical Amplifier,”Press Release for Immediate Publication, OFC '98, San Jose, 1 unnumbered p., (Feb. 1998).
Diez, S., Ludwig, R., and Weber, H.G., “All-Optical Switch for TDM and WDW/TDM Systems Demonstrated in a 640 Gbits/s Demultiplexing Experiment,” Electronics Letters, vol. 34, No. 8, pp. 803-805, Apr. 16, 1988.
Diez, S., Ludwig, R., and Weber, H.G., Gain-Transparent SOA-Switch for High-Bitrate OTDM Add/Drop Multiplexing, IEEE Photonics Technology Letters, vol. 11, No. 1, pp. 60-62, Jan. 1999.
Diez, S., Ludwig, R., Patzak, E., and Weber, H.G., “Novel Gain-Tranparent SOA-Switch for High Bitrate OTDM Add/Drop Multiplexing,” ECOC'98, vol. 1, pp. 461-462, Sep. 1998.
Dorgeuille, F., Noirie, L., Faure, J-P., Ambrosy, A., Rabaron, S., Boubal, F., Schilling, M., and Artigue, C., “1.28 Tbit/s Throughput 8×8 Optical Switch Based on Arrays of Gain-Clamped Semiconductor Optical Amplifier Gates,” Optical Fiber Communication Conference, vol. 4, pp. 221-223, Mar. 2000.
Dorgeuille, F., Lavigne, B., Emery, J.Y., Di Maggio, M., Le Bris, J., Chiaroni, D., Renaud, M., Baucknecht, R., Schneibel, H.P., Graf, C., and Melchior, H., “Fast Optical Amplifier Gate Array for WDM Routing and Switching Applications,” OFC '98 Technical Digest, pp. 42-44, 1998.
Doussiere, P., Jourdan, A., Soulage, G., Garabédian, P., Graver, C., Fillion, T., Derouin, E., and Leclerc, D., “Clamped Gain Travelling Wave Semiconductor Optical Amplifier for Wavelength Division Multiplexing Application,” IEEE, US, vol. Conf. 14, pp. 185-186, New York, Sep. 14, 1994.
Evankow, Jr., J.D., and Thompson, R. A., “Photonic Switching Modules Designed with Laser Diode Amplifiers,” IEEE, Journal on Selected Areas in Communications, vol. 6, No. 7, pp. 1087-1095, Aug. 1988.
Fernier, B., Brosson, P., Bayart, D., Doussiére, P., Beaumont, R., Leblond, F., Morin, P., Da Loura, G., Jacquet, J., Derouin, E., and Garabedian, P., “Fast (300 ps) Polarization Insensitive Semiconductor Optical Amplifier Switch with Low Driving Current (70 mA),” Semicondutor Laser Conference, Conference Digest, 13thIEEE International, pp. 130-131, Sep. 21-25, 1992.
Fouquet, J.E., Venkatesh, S., Troll, M., Chen, D., Schiaffino, S., and Barth, P.W., “Compact, Scalable Fiber Optic Cross-Connect Switches,” IEEE, 1999 Digest of the LEOS Summer Topical Meetings, pp. 59-60, 1999.
Ibrahim, M.M., “Photonic Switch Using Surface-Emitting Laser Diode and APD,” 16thNational Radio Science Conference, NRSC'99, pp. 1-8, Ain Shams University, Cairo, Egypt, Feb. 23-25, 1999.
Jeong, G., and Goodman, J.W., “Gain Optimization in Switches Based on Semiconductor Optical Amplifiers,” Journal of Lightwave Technology, Vo. 13, No. 4, pp. 598-605, Apr. 1995.
Kitamura, S., Hatakeyama, H., and Hamamoto, K., “Spot-Size Converter Integrated Semiconductor Optical Amplifiers for Optical Gate Applications,” IEEE Journal of Quantum Electonics, vol. 35, No. 7, pp. 1067-1074, Jul. 1999.
Leuthold, J., Besse, P.A., Eckner, J., Gamper, E., Dülk, M., and Melchior, H., “All-Optical Space Switches with Gain and Principally Ideal Extinction Ratios,” IEEE Journal of Quantum Electronics, vol. 34, No. 4, pp. 622-633, Apr. 1998.
McAdams, L.R., Weverka, R.T., and Cloonan, J., “Linearizing High Performance Semiconductor Optical Amplifiers: Techniques and Performance,” LEOS Presentation, pp. 363-364, 1996.
Mørk, J., and Mecozzi, A., “Semiconductor Devices for All-Optical Signal Processing: Just How Fast Can They Go?,” IEEE Lasers and Electro-Optics Society 1999 12thAnnual Meeting, LEOS'99, vol. 2, pp. 900-901, Nov. 8-11, 1999.
Mutalik, V. G., van den Hoven, G., and Tiemeijer, L., “Analog Performance of 1310-nm Gain-Clamped Semiconductor Optical Amplifiers,” OFC '97 Technical Digest, pp. 266-267, 1997.
Panajotov, K., Ryvkin, B., Peeters, M., Verschaffelt, G., Danckaert, J., Thienpont, H., Veretennicoff, I., “Polarisation Switching in Proton-Implanted VCSELs,” 1999 Digest of the LEOS Summer Topical Meetings, pp. 55-56, Jul. 26-30, 1999.
Qui, B.C., Ke, M.L., Kowalski, O.P., Bryce, A.C., Aitchison, J.S., Marsh, J.H., Owen, M., White, I.H., and Penty, R.V., “Monolithicially Integrated Fabrication of 2×2 and 4×4 Crosspoint Switches Using Quantum Well Intermixing,” 2000 International Conference on Indium Phosphide and Related Materials, Conference Proceedings, pp. 415-418, May 14-18, 2000.
Scheuer, J., Arbel, D., and Orenstein, M., “Nonlinear On-Switching of High Spatial Frequency Patterns in Ring Vertical Cavity Surface Emitting Lasers,” 1999 IEEE LEOS Annual Meeting Conference Proceedings, 12thAnnual Meeting, IEEE Lasers and Electro-Optics Society 1999 Annual Meeting, vol. 1, pp. 123-124, Nov. 8-9, 1999.
Soto, H., Erasme, D., and Guekos, G., “All-Optical Switch Demonstration Using a Birefringence Effect in a Semiconductor Optical Amplifier,” IEEE CLEO, Pacific Rim '99, pp. 888-889, 1999.
Soulage, G., Doussiére, P., Jourdan, A., and Sotom, M., “Clamped Gain Travelling Wave Semiconductor Optical Amplifier as a Large Dynamic Range Optical Gate,” Alcatel Alsthom Recherche, route de Nozay, 91460 Marcoussis (France), 4 unnumbered pages, undated.
Tai, C., and Way, W.I., “Dynamic Range and Switching Speed Limitations of aN ×NOptical Packet Switch Based on Low-Gain Semiconductor Optical Amplifiers,” IEEE Journal of Lightwave Technology, vol. 14, No. 4, pp. 525-533, Apr. 4, 1996.
Tiemeijer, L.F., Walczyk, S., Verboven, A.J.M., van den Hoven, G.N., Thijs, P.J.A., van Dongen, T., Binsma, J.J.M., and Jansen, E.J., “High-Gain 1310 nm Semiconductor Optical Amplified Modules with a Built-in Amplified Signal Monitor for Optical Gain Control,” IEEE Photonics Technology Letters, vol. 9, No. 3, pp. 309-311, Mar. 1997.
Toptchiyski, G., Kindt, S., and Petermann, K., “Time-Domain Modeling of Semiconductor Optical Amplifiers for OTDM Applications,” IEEE Jour
DiJaili Sol P.
Wachsman John M.
Walker Jeffrey D.
Finisar Corporation
Hellner Mark
Workman Nydegger
LandOfFree
Optical 2R/3R regeneration does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Optical 2R/3R regeneration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical 2R/3R regeneration will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3591605