Opposed slant tube diabatic sorber

Refrigeration – Refrigeration producer – Sorbent type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S476000, C062S489000

Reexamination Certificate

active

06679083

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable
REFERENCE TO A MICROFICHE APPENDIX
Not applicable
FIELD OF THE INVENTION
The present invention relates to geometric configurations for heat and mass transfer involving sorption of a sorbate vapor into (absorption) or out of (desorption) a volatile liquid sorbent accompanied by heat exchange with a heat transfer fluid. Diabatic sorption processes are useful in many industrial processes, and especially in absorption refrigeration cycles and absorption power cycles.
BACKGROUND OF THE INVENTION
Sorption inherently involves mass transfer between vapor and liquid phases. Thus, latent heat is either released (absorption) or acquired (desorption). In adiabatic sorption, that change in latent heat changes the sorbent temperature so much that the extent of sorption is very limited. Therefore, in processes wherein large changes of concentration, i.e., sorbent loading, are desired, heat exchange with an external medium is provided. This is called diabatic sorption.
The heat and mass transfer resistances encountered in sorption processes include the following: heat transfer through the liquid; heat transfer between liquid and vapor; and heat transfer through the vapor; plus mass transfer through the liquid, mass transfer between liquid and vapor, and mass transfer through the vapor. The mass transfer resistance through the vapor is encountered in sorption processes involving a volatile sorbent, i.e., those in which the vapor phase includes appreciable quantities of both sorbate and sorbent molecules. Sorption between ammonia as sorbate and water as sorbent are an example of this—both phases include appreciable quantities of each species, and the “relative volatility” is the ratio of concentrations of the two phases. The vapor phase mass transfer resistance is normally small with a non-volatile sorbent unless non-condensables are present.
The resistance to heat and mass transfer is frequently found to be much greater in sorption processes which have volatile sorbents, owing to the above vapor phase mass transfer resistance. For example, consider the condensation of pure H
2
O and of pure NH
3
on cooled straight tubes. When an NH
3
—H
2
O vapor mixture is supplied to the same tubes, the overall coefficient of partial condensation or absorption can be more than an order of magnitude lower than the pure vapor condensation coefficient. The effect is similar to what occurs when there is severe blanketing with non-condensables. This major increase in heat and mass transfer resistance has caused the sorbers for volatile sorbents to be large and costly, which limits their application.
The prior art discloses many attempts and approaches to overcoming this problem, with only limited success. U.S. Pat. Nos. 5,339,654; 5,572,885; and 5,713,216 disclose shell and concentric coil arrangements adapted for diabatic vapor-liquid contact, which utilize unusual tube geometries. U.S. Pat. No. 6,314,752 discloses a partially flooded counter-current falling film geometry from folded sheet metal, similar to a known industrial configuration. U.S. Pat. No. 5,766,519 and 5,660,049 disclose diabatic sorber geometries based on channels formed by folded sheet metal which incorporate liquid recirculation. U.S. Pat. No. 5,490,393 discloses a diabatic (GAX) absorber comprised of three concentric coils of tubing in a shell, all with the same coiling direction. Other prior art disclosures of concentric coils in a shell used as a diabatic sorber in an absorption cycle include U.S. Pat. Nos. 3,254,507; 3,390,544; 3,423,951; and 4,106,309. U.S. Pat. No. 4,193,268 discloses a concentric coil evaporator. U.S. Pat. No. 2,826,049 discloses a co-current downflow NH
3
—H
2
O absorber with counter-current heat exchange in a shell-and-tube geometry. An absorption power cycle with a shell-and-coil absorber is disclosed in U.S. Pat. No. 4,307,572. The absorber has crosscurrent mass exchange and co-current heat exchange. U.S. Pat. No. 6,269,644 discloses a more recent absorption power cycle. U.S. Pat. No. 5,692,393 discloses a countercurrent mass exchange shell side desorption with countercurrent heat exchange by a single helical coil. U.S. Pat. No. 5,729,999 discloses a countercurrent mass exchange absorption using helical rods inside multiple cylinders. U.S. Pat. No. 5,557,946 and Swiss Patent 272,868 disclose additional cylindrical coil in shell sorbers. A variety of shell and coil heat exchangers are commercially available for liquid—liquid heat exchange or condensing heat exchange. Absorption power cycles and dual function absorption cycles are disclosed in U.S. Pat. No. 6,269,644.
Sorption is frequently accompanied by a substantial temperature glide, which can be beneficial to the overall transfer process, provided the heat transfer is counter-current, and provided there is no global recirculation of the liquid sorbent—local recirculation is beneficial, per U.S. Pat. No. 5,766,519. The volumetric flow rate of vapor may change during the sorption process by an order of magnitude or more. Similarly, the required flow rate and volume of heat transfer fluid can vary widely, and the large temperature glide may require a large number of transfer units. When using aqueous ammonia as working fluid, all-welded construction is desirable. Nickel-based brazing is acceptable for some metal-joining operations, but it is costly. The sheet metal configurations typically require such brazing, or substantial amounts of precision welding. Conventional shell and straight or U tube geometries must have relatively large spacing between tubes, too large for the desired tortuous flow path, owing to minimum tube-to-tube clearances at the tube sheet. For co-current upflow geometries, the hydrostatic pressure head may become excessive at heights above about 2 m, which restricts tube length in shell and tube configurations with counter-current heat exchange.
Thus, what is needed, and included among the objects of this invention, is a heat and mass transfer device for diabatic sorption with a volatile sorbent, which:
achieves a tortuous and/or turbulent flow path across the heat transfer surface by the sorbate vapor and sorbent liquid, such that the vapor-liquid interface is continuously renewed;
has counter-current heat exchange with a heat transfer fluid;
establishes and maintains good distribution of both fluid phases;
is adaptable to either co-current or counter-current mass exchange;
is preferably highly compact with all welded joints;
accommodates major variations in vapor and/or liquid loading; and
preferably can have multiple separate heat transfer fluids, in parallel and/or series.
BRIEF SUMMARY OF THE INVENTION
The above and additional useful objects are achieved by providing a sorber comprised of:
a) at least three concentric coils of tubing contained in a shell;
b) a flow path for liquid sorbent in one direction through said sorber, into a sorbent entrance port and out of a sorbent exit port;
c) a flow path for heat transfer fluid through said sorber which is in counter-current heat exchange relationship with said sorbent flow path;
d) a sorbate vapor port which is in communication with at least one of said sorbent ports;
e) wherein each coil is coiled in opposite direction to those coils adjoining it, whereby an opposed slant tube configuration is obtained; and
f) wherein there is structure for flow modification in the core space inside the innermost coil.
The close juxtaposition of tubes slanted in one direction in a particular coil and in the opposite direction in the adjoining coil(s) gives rise to a tortuous, sinuous flow path which is known to provide an excellent liquid phase heat transfer coefficient. For sorption, it has been discovered to additionally overcome the traditional high resistance to heat and mass transfer encountered in volatile sorbent sorption processes provided the coil-to-coil spacing is less than about 4 mm and preferably less than 1.5 mm. It is theorized that this is the result of the tortuous flow path acting on the vapor-liquid interface to continuously distort

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Opposed slant tube diabatic sorber does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Opposed slant tube diabatic sorber, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Opposed slant tube diabatic sorber will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.