Computer graphics processing and selective visual display system – Display peripheral interface input device – Including keyboard
Reexamination Certificate
1996-08-26
2002-08-27
Liang, Regina (Department: 2674)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Including keyboard
C455S170100, C455S179100
Reexamination Certificate
active
06441806
ABSTRACT:
TECHNICAL FIELD
This invention relates to apparatus for enabling operator interaction with electrical systems and more particularly to apparatus of this kind which includes a display screen that visually conveys information to an operator or user of the apparatus.
BACKGROUND OF THE INVENTION
Operators of certain types of electrical apparatus manipulate a different switch button, key, rotary knob or the like to control each different function of the apparatus. Traditional controls of this kind are convenient to operate and provide fast response to operator input. As such controls are single function devices, identifying labels, settings location symbols, calibration marks and other graphics are permanent markings situated adjacent to or on the controls.
Increasingly, electromechanical controls of the single function kind are being replaced with multiple function controls in which the operator uses a single device to initiate or control a number of different operations. Visual symbols or other graphics that may be needed by the operator in order to utilize the control are presented on a display screen which is situated in the vicinity of the control. The graphics can be changed instantly to enable use of the same control for different purposes. A control of this kind can replace a large number of specialized single function controls and can in fact have virtually unlimited functional flexibility. The keyboard keys, mouse or trackball and video display screen which interface a computer and the user of the computer are an example of multiple function controls of this kind.
Prior multiple function controls of the above described kind have disadvantages that are not experienced by operators of traditional single function controls although this has not been widely recognized. Prior multiple function controls require more complex and prolonged hand movements on the part of the operator and are less comfortable to operate at least for most users.
While the present invention is not limited to use with computers, consideration of the current interfacing of a computer and the operator is illustrative of problems which are inherent in prior multiple function controls.
Much of the operator input to a computer is effected with a mouse or trackball and the computer screen. The following sequence of hand manipulations is required to select a single “pop up” window on a computer screen and then make a selection within that window:
(a) The hand is moved to grasp the mouse or trackball.
(b) Additional hand movement travels the screen cursor to a selected spot on the screen.
(c) Finger movement at the mouse or trackball switch clicks the device to select that specific spot.
(d) Further hand movement travels the cursor to a new spot on the screen within the pop up window.
(e) Further finger movement at the mouse or trackball makes the selection from the window.
Clearly it would be faster and less taxing to just turn a knob and/or push a switch to make such selections. Complex software, such as four color graphics and picture generation or music sound design and sequencer software, forces the operator to make hundreds or thousands of “clicks and drags” of the mouse or trackball in order to run a single program.
Pushing a switch or turning a knob feels right because it is familiar, it works fast and it satisfies the human mind's natural sensory perceptions. Thus it would be advantageous if multiple function controls gave the operator the immediate response and familiar tactile feel of traditional single function control mechanisms.
Prior efforts to accomplish this have significant limitations. Switch buttons have been positioned adjacent to the perimeters of liquid crystal displays or cathode ray tube screens. The display or screen is then used to create temporary labels which identify the current function of each switch. The visible image areas of the displays or screens are smaller than the total areas of the faces of the devices owing to the presence of thick structural framing, seals and/or bus conductors at the peripheral regions of the devices. Consequently, labels which appear on the screen are located a distance away from the switches which the labels identify. Typically, the label is ⅝ of an inch to ¾ of an inch away from the switch. This makes it less easy to identify a particular label with a particular switch and increases the possibility of operator error. It is also not possible to situate graphics, such as radial lines or other control setting indicators, at any location around the periphery of a control as is often desirable.
Touch screens, utilizing infrared beams or the like, of the type used as control panels for industrial computer screens or in kiosks in stores, malls, banks or hotels, for example, can also be configured as multiple function controls but also have undesirable characteristics. The response time of touch screens is slow at best. It is often necessary to touch the screen two or three times to enter instructions or data. The feel of a touch screen is not a satisfactory tactile experience for many operators.
The present invention is directed to overcoming one or more of the problems discussed above.
SUMMARY OF THE INVENTION
In one aspect of the present invention, operator and electrical circuit interfacing apparatus has at least one circuit component which enables operator interaction with the circuit and has an electrically controlled display screen. Control means generate any of a plurality of different images at an image display area of the screen. At least a portion of the circuit component is situated at the screen within the image display area. The control means generates an image on the screen that conveys information pertaining to the operation of the circuit component.
In another aspect of the invention, the control means generates the image at a location on the screen that is adjacent to the circuit component.
In another aspect of the invention, the control means enables display of different information pertaining to the component at different times at the same location adjacent to the component.
In another aspect of the invention, at least one opening extends into the image display area of the screen and at least a portion of the circuit component is situated within the opening. The circuit component has a control member which can be moved from a first position to at least one other position to alter an electrical characteristic of the component which control member extends outward from the screen.
In another aspect of the invention, sensor means detect movement of the control member and the sensor means may be behind the screen.
In another aspect of the invention, apparatus for enabling manual control of electrical equipment has a plurality of operator actuated components each having a component housing and an actuator which extends from the the housing and which can be moved from a first position to at least one other position to alter operation of the equipment. The apparatus further includes a control panel formed at least in part by a flat panel display having an image area at which visible images can be displayed. A plurality of spaced apart openings extend into the display at locations which are within the image area. The component housings are situated behind the image area and the actuators of the components extend through the openings in the image area. Control means generate visible images at the image area at locations which are in proximity to the actuators which images convey information pertaining to operation of the components.
In another aspect of the invention, an electromechanical switch has a movable switch cap which may be depressed by an operator to operate the switch. The switch further includes a flat panel display with a display screen having an image area at which visible images may be generated, the flat panel display being embedded in the switch cap. Control means enable display of an image on the screen which conveys information pertaining to use of the switch. The image area of the screen is substantially co
Intertact Corporation
Liang Regina
Zimmerman, Esq. Harris
LandOfFree
Operator/circuit interface with integrated display screen does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Operator/circuit interface with integrated display screen, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Operator/circuit interface with integrated display screen will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2880418