Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2001-05-22
2004-01-20
Le, Uyen (Department: 2171)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000, C709S224000, C709S226000, C709S241000
Reexamination Certificate
active
06681232
ABSTRACT:
FIELD OF THE INVENTION
The concepts involved in the present inventions relate to operations support, provisioning and the like for managed IP services in a new IP over fiber to the premises type metropolitan area network.
BACKGROUND
The explosive growth of e-commerce, Internet-based businesses, and multimedia streaming is creating an insatiable demand for network bandwidth. At the same time, new network-enabling technologies are fueling the desire for bandwidth by opening up new possibilities for its use. This in turn has accelerated the emergence of more data-intensive applications, which are further fueling the demand for bandwidth. This cycle is driving a spiraling demand for bandwidth and the technology to support and deploy this bandwidth.
Until recently it was a given that data sometimes did not get through, or packet delivery might be sporadic, or only at a best-effort rate. However, with the accelerating rise in the level of complexity and sophistication in e-commerce, real-time transaction processing, and media streaming, this is no longer acceptable. Service levels must now be defined and adhered to. While “Quality of Service” (QoS) is a concept with a nominal standards-body derived definition, the requirements for Extranet/Intranet networking services are driving QoS towards metrics which are clearly measurable, verifiable, and reportable.
Furthermore, meeting these QoS metrics is becoming a stringent requirement for service providers to meet their contractual obligations. Thus, Quality of Service and the measurement and assurance of QoS have taken a significant role in defining future network architecture requirements. This has in turn created new traffic engineering challenges for network service providers. There is now a need to be able to guarantee various performance metrics, such as minimum latency, bandwidth or jitter, across shared network infrastructures. Customers require guarantees of one or more of these metrics to ensure proper performance, for example for latency sensitive applications such as Voice-over-IP (VoIP) or for bandwidth-intensive applications such as streaming multimedia. Designing an architecture that can meet this requirement is an engineering challenge. Integrating this architecture with the unpredictability and underestimated capacity of the public Internet becomes even more of a challenge.
Business customer requirements for network services are becoming increasingly sophisticated and stringent. The salient features such as network reliability, security, resource availability, network configuration flexibility, service profile manageability, and application based QoS networked elements are prerequisites for real-time business applications. To meet such requirements, the underlying network platform should have multifaceted features and functionality. The capacity of the transport network not only should be large enough to accommodate future growth, but also flexible enough to be apportioned on a dynamic, on-demand basis. Additionally, the platform should support Layer 3 routing as well as Layer 2 switching in order to accommodate different customer network architectures and protocols.
With the development of any type of network that might meet the general needs outlined above there comes an attendant need for improved systems for operations support, provisioning and management of the IP services provided to the customers. Customers are demanding that the services be up and running or running in the latest requested modified form, within minutes of a new service request. Customers also are demanding that the data network provide an ever increasing degree of reliability. To allow a carrier to meet these customer demands, there is a clear need for network monitoring, management and support systems, which allow the carrier to maintain and provision the network quickly and efficiently. There also is an associated need to monitor the performance of the network, to monitor and manage the “health” thereof. Such monitoring must be able to determine and report a wide range of relevant performance metrics, which may impact on customer traffic and/or show compliance with customer' service level agreements.
SUMMARY OF THE INVENTION
With the developments of an advanced communication network, meeting the general communication needs outlined above, Applicants also have developed improved systems for operations support, for monitoring, provisioning and management of the IP services provided to the customers by such an advanced metropolitan area fiber network or the like.
In one aspect, the invention contemplates a service level manager, for operations support in an extended-area data communications network. The service level manager comprises at least one network database, storing network topology information. Preferably the information in the database(s) further includes service and customer information. The database(s) also receive and store dynamic service-related operations data, from agents in the network. A persistence layer module processes data from the network database(s). This processing provides data representing a dynamic view of the topology as well as data representing operations of the extended-area data communications network. The service level manager also includes a user interface, for providing information to and receiving inputs from users. As disclosed, the user interface is accessible both by carrier staff personnel and by end-use customers.
The inventive manager further includes a service level manager application, in communication with the persistence layer module and the user interface. The functions of this application include monitoring the operations of the extended-area data communications network, by analyzing semantic transparency or time transparency of data traffic through the network based on the data provided by the persistence layer module from the agents in the network. The application provides reports to users, via the user interface, of the monitored network operations with respect to specific network services. The application also interacts with elements of the extended-area data communications network to control service traffic through the network, for example to increase a customer's bandwidth upon request as input by the customer or by carrier staff.
The service level manager application preferably is a multi-layered, modular, scalable, distributed, verifiable, data-driven, vendor independent, and platform neutral architecture, for example, based on Enterprise Java Beans. The service level manager application may deliver unified service level management to the carrier's customers, partners, staff personnel and other operations support systems. The preferred form of this inventive application provides service layer and network management layer services, such as QoS monitoring/reporting and automatic bandwidth increases/decreases. The service level manager application collects network and service related operations data from various agents, analyzes this data and transforms the data into accessible knowledge. The application also provides a convenient interface to interact with the network elements, to modify operations thereof on an as-needed basis in real-time.
In one embodiment, the application layer comprises a topology service module, for obtaining network or service topology information from the network database(s). This layer also includes a monitoring service module, for communicating with the agents to obtain the dynamic service-related operations data. The service level manager application further comprises a provisioning service module. This module converts a service provisioning request into instructions for implementing a service change identified by the request. This conversion is based at least in part on the network or service topology information obtained by the topology service module. In this embodiment, the service level manager application also includes a measurement service module. This module computes reports of the monitored network operations from data accumulated by the mon
Kamali Masoud M.
Sistanizadeh Kamran
Le Uyen
McDermott & Will & Emery
Yipes Enterprise Services, Inc.
LandOfFree
Operations and provisioning systems for service level... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Operations and provisioning systems for service level..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Operations and provisioning systems for service level... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3249082