Pumps – One fluid pumped by contact or entrainment with another – Jet
Reexamination Certificate
2000-03-03
2002-03-05
Freay, Charles G. (Department: 3746)
Pumps
One fluid pumped by contact or entrainment with another
Jet
C095S176000, C095S177000
Reexamination Certificate
active
06352414
ABSTRACT:
This application claims priority of International Application PCT/IB99/01220 filed Jun. 30, 1999 with priority of RU 98113117 filed Jul. 3, 1998.
BACKGROUND
The invention pertains to the field of jet technology, primarily to pump-ejector units for evacuation and compression of various gaseous mediums.
An operating process of a pump-ejector system is known, which consists in the delivery of a liquid medium into nozzles of first-stage and second-stage liquid-gas ejectors by a pump, evacuation of a gaseous medium by the first-stage ejector, discharge of a gas-liquid mixture containing the evacuated gaseous medium from the first-stage ejector into a first-stage gravity-inertial separator, evacuation of a gaseous medium from the first-stage separator by the second-stage ejector and discharge of a gas-liquid mixture from the second-stage ejector into a second-stage separator (see patent, RU, 2094070, 27.10.97).
The same patent also introduces a multiple-stage pump-ejector system having a first-stage liquid-gas ejector, a second-stage liquid-gas ejector, a first-stage gravity-inertial separator, a second-stage separator and a pump intended for delivery of a liquid medium from the second-stage separator into nozzles of the first-stage and second-stage ejectors.
The described operational process and the system for its embodiment provide evacuation of a gaseous medium from a vacuum rectification column and consequently a vacuum in the column. However such process and system do not allow sequential compression of the evacuated gas stage by stage. Therefore the application ranges of the process and the system are limited.
The closest analogue of the operational process introduced by the present invention is an operational process of a pump-ejector unit, which includes delivery of a motive liquid into nozzles of first-stage and second-stage liquid-gas ejectors by a pump, evacuating a gaseous medium by the first-stage ejector, compressing the gaseous medium in the first-stage ejector, discharging a gas-liquid mixture containing the evacuated gaseous medium from the first-stage ejector into a first-stage separator, separating the mixture in the first-stage separator into compressed gas and motive liquid, evacuating the compressed gas from the first-stage separator by the second-stage ejector, additionally compressing the evacuated compressed gas in the second-stage ejector, discharging a gas-liquid mixture containing the additionally compressed gas from the second-stage ejector into a second-stage separator, separation of the mixture in the second-stage separator into the additionally compressed gas and the motive liquid and subsequent delivery of the additionally compressed gas from the separator to consumers, and bypassing the motive liquid from the first-stage separators into the second-stage one (see application WO 96/16711, published on Jun. 6, 1996).
The same application describes a pump ejector unit having a first-stage ejector and a first-stage separator, a second-stage ejector and a second-stage separator, and a pump. A discharge side of the pump is connected to the nozzles of the first-stage and second-stage ejectors, the gas inlet of the first-stage ejector is connected to a source of an evacuated gaseous medium, an outlet of the first-stage ejector is connected to the first-stage separator, the gas inlet of the second stage ejector is connected to the gas outlet of the first-stage separator, an outlet of the second-stage ejector is connected to the second-stage separator, and the two separators are interconnected by a pipe.
With this operating process and related pump-ejector unit it is possible to evacuate a gaseous medium from a reservoir, for example from a rectification column. But the introduced layout and design of the system propose feeding a motive liquid from the first-stage separator into the second-stage one and only then delivery of the liquid from the second-stage separator into the ejectors by the pump. As a result, motive liquid with a high content of dissolved gases is fed into the ejectors nozzles. This negatively affects capacity of the ejectors, especially performance of the first-stage ejector intended for maintaining the required pressure in the evacuated reservoir.
SUMMARY OF THE INVENTION
This invention is aimed at increasing capacity of a pump-ejector system and at improving operational reliability of the system.
With regard to the operating process as the subject-matter of the invention, the stated technical problem is solved as follows: an operating process of a pump-ejector system, which includes delivery of a liquid medium into the nozzles of first-stage and second-stage liquid-gas ejectors by a pump, evacuating a gaseous medium by the first-stage ejector, compressing the gaseous medium in the first-stage ejector, discharging a gas-liquid mixture containing the evacuated gaseous medium from the first-stage ejector into a first-stage separator, separating the mixture in the first-stage separator into compressed gas and motive liquid, evacuating the compressed gas from the first-stage separator by the second-stage ejector, additionally compressing the evacuated compressed gas in the second-stage ejector, discharging a gas-liquid mixture containing the additionally compressed gas from the second-stage ejector into a second-stage separator, separating the mixture in the second-stage separator into the additionally compressed gas and the motive liquid and subsequent delivery of the additionally compressed gas from the second-stage separator to consumers, where bypassing the motive liquid between the first-stage and second-stage separators is modified so that the motive liquid passes from the second-stage separator into the first-stage separator wherefrom the motive liquid is fed into the nozzles of the first-stage and second-stage ejectors by the pump.
The bypassing of the motive liquid from the second-stage separator into the first-stage one is forced by a difference between pressures in the second-stage and first-stage separators, and the volume of the bypassed motive liquid is adjusted by an artificially created hydraulic resistance. The motive liquid is cooled prior to its delivery to the suction port of the pump.
With regard to the apparatus as the subject-matter of the invention, the mentioned technical problem is solved as follows:
A multiple-stage pump-ejector system, which has a first-stage ejector, a first-stage separator, a second-stage ejector, a second-stage separator and a pump, and wherein the discharge side of the pump is connected to the nozzles of the first-stage and second-stage ejectors, the gas inlet of the first-stage ejector is connected to a source of an evacuated gaseous medium, an outlet of the first-stage ejector is connected to the first-stage separator, the gas inlet of the second-stage ejector is connected to the gas outlet of the first-stage separator, an outlet of the second-stage ejector is connected to the second-stage separator and the two separators are interconnected by a pipe, and further has the following design features: the suction side of the pump is connected to the first-stage separator, the first-stage and second-stage separators are interconnected by a vertical U-tube acting as a hydro seal, where the height of the U-tube above the motive liquid level in the second-stage separator is not less than the height of liquid column created in the U-tube by the motive liquid from the second-stage separator under a pressure difference between the separators.
In addition, the pump-ejector system can be furnished with a third stage. In this case the gas inlet of a third-stage ejector is connected to the second-stage separator, a nozzle of the third-stage ejector is connected to the discharge side of the pump, an outlet of the third-stage ejector is connected to a third-stage separator, the third-stage separator is connected to the first-stage separator through a vertical U-tube.
There is another variant of the multiple-stage pump-ejector system having a first-stage ejector, a first-stage separator, a second-stage ejector,
Freay Charles G.
Gray Michael K.
Oathout Mark A.
Petroukhine Evgueni D.
LandOfFree
Operation method for a pumping-ejection apparatus and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Operation method for a pumping-ejection apparatus and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Operation method for a pumping-ejection apparatus and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2839272