Telecommunications – Radiotelephone system – Zoned or cellular telephone system
Reexamination Certificate
1998-08-24
2001-05-15
Trost, William G. (Department: 2683)
Telecommunications
Radiotelephone system
Zoned or cellular telephone system
C455S560000, C455S067150
Reexamination Certificate
active
06233449
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
This invention relates to telecommunication systems and, more particularly, to a self-engineering telecommunications network which includes an operation and maintenance control point.
2. Description of Related Art
Existing telecommunications networks interface with a Network Management System (NMS) which oversees the operation and maintenance of the network. The NMS communicates with different network elements (NEs) in the network. The NEs send reports to the NMS indicating the performance of the reporting NE. When a fault occurs in a NE, the NE sends an alarm and the fault symptoms to the NMS. However, the reported symptoms are often not enough to enable efficient management of the network. In addition, the NMS is centralized with many NEs reporting to the NMS. The processing load is too great for the NMS to efficiently analyze the reported symptoms and determine the root causes of the problems.
There are no known prior art teachings of a solution to the aforementioned deficiency and shortcoming such as that disclosed herein. It would be advantageous to have an operation and maintenance control point which operates at an intermediate level in the network between the NEs and the NMS. Such a device would reduce the processing load on the NMS and rather than reporting symptoms, would provide the NMS with suggested corrective actions to correct reported problems. By automatically interfacing with the NMS, which analyzes and executes the suggested corrective actions, the operation and maintenance control point would create a self-engineering telecomnnunications network.
SUMMARY OF THE INVENTION
In one aspect, the present invention is an operation and maintenance control point (OMCP) in a telecommunications network having a plurality of network elements that report to the OMCP and a network management system (NMS) to which the OMCP reports. The OMCP comprises a performance monitoring function that monitors performance of the network elements and determines quality of service (QoS) in the network, a trouble sniffer that receives performance and QoS data from the performance monitoring function and detects faults within the network, and an action proposal agent that receives performance and QoS data from the performance monitoring function and fault data from the trouble sniffer, and provides suggested corrective actions to the NMS.
In another aspect, the present invention is a self-engineering telecommunications network comprising a plurality of network elements (NEs), an operation and maintenance control point (OMCP) that receives preprocessed data from the NEs and determines suggested corrective actions, and a network management system (NMS) that receives the suggested corrective actions from the OMCP and executes them. Each of the NEs includes means for collecting raw traffic data and exchange data, and means for preprocessing the raw data. The OMCP includes a performance monitoring function that monitors performance of the NEs and determines quality of service (QoS) in the network, a trouble sniffer that receives performance and QoS data from the performance monitoring function and detects faults within the network, and an action proposal agent that receives performance and QoS data from the performance monitoring function and fault data from the trouble sniffer, and determines suggested corrective actions. The NMS includes means for predicting results within the network of executing the suggested corrective actions, means for executing the suggested corrective actions, means for determining the actual results of executing the suggested corrective actions, and means for providing feedback to the action proposal agent regarding the actual results. The action proposal agent then utilizes the feedback to provide better suggested corrective actions.
In another aspect, the present invention is a method of implementing a self-engineering telecommunications network. The method begins by automatically collecting information about the network's performance, detecting problems with the network's performance utilizing the collected information, and analyzing possible causes of the detected problems. The method continues by automatically determining suggested corrective actions to correct the causes, predicting results of executing the suggested actions, and executing the actions. This is followed by automatically comparing actual results of executing the suggested actions with the predicted results, and learning from the comparing step so that improved corrective actions are suggested when problems recur.
In yet another aspect, the present invention is a method of performing traffic load sharing between the cells of a self-engineering cellular radio telecommunications network. The network includes a mobile switching center (MSC) and a plurality of radio base stations serving a plurality of cells. The method comprises the steps of collecting by the MSC, traffic measurements from all the cells in the service area of the MSC, sending the traffic measurements to an operation and maintenance control point (OMCP), determining in the OMCP whether there is adverse traffic loading in the cells that is adversely affecting network performance, and automatically determining in the OMCP, suggested changes in cell sizes to correct the adverse traffic loading.
In still another aspect, the present invention is a method of configuring and testing a new hardware or software device in a self-engineering telecommunications network. The method begins by installing the new device in the network to correct a reported problem, detecting the new device by a network element, generating by the network element, an event indicating what type of device was installed and its predefined usage, and loading and configuring the device with predefined default parameters. This is followed by reporting to an operation and maintenance control point (OMCP) that the new device has been installed, collecting raw exchange data and traffic data by the network element, and sending the collected data to the OMCP. The OMCP then monitors the performance of the new device and the quality of service in the network, and determines whether the new device has failed. If it has failed, the OMCP performs fault analysis to determine why the new device failed, and reports a failure cause to a network management system (NMS) for corrective action. If the new device did not fail, the method continues by reporting to the NMS that the new device has been installed and is working properly, utilizing simulations by the NMS to predict effects on network performance of utilizing the properly working new device to process traffic in the network, and utilizing the new device in traffic processing. This is followed by determining actual results of utilizing the new device in traffic processing, comparing the actual results with the predicted effects, and refining the simulations to increase the accuracy of the predicted effects.
In yet another aspect, the present invention is a method of analyzing a reported fault from a hardware or software device in a network element in a self-engineering telecommunications network. The method begins by collecting by the network element a fault event from raw exchange data and traffic data, determining in the network element whether the event is new or whether it has been previously discovered and reported, and sending the event to an operation and maintenance control point (OMCP) if the event is new. This is followed by determining in a performance monitoring function in the OMCP whether a predefined performance threshold has been crossed, passing information regarding the event to a trouble sniffer function in the OMCP, determining a root cause of the fault event in the trouble sniffer function, and determining in an action proposal agent in the OMCP, suggested corrective actions to correct the fault event. The OMCP then sends the suggested corrective actions to a network management system (NMS) where simulation programs are utilized to predict
Glitho Roch
Svensson Bo
Gesesse Tilahun
Smith ,Danamraj & Youst, P.C.
Telefonaktiebolaget L M Ericsson (publ)
Trost William G.
LandOfFree
Operation and maintenance control point and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Operation and maintenance control point and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Operation and maintenance control point and method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2494086