Imperforate bowl: centrifugal separators – Including sealing means – Comprising seal – or element cooperating therewith – movable...
Patent
1989-04-14
1990-05-15
Jenkins, Robert W.
Imperforate bowl: centrifugal separators
Including sealing means
Comprising seal, or element cooperating therewith, movable...
494 27, B04B 308
Patent
active
049254421
DESCRIPTION:
BRIEF SUMMARY
The present invention concerns a centrifugal separator having a rotor with a rotor body, an annular slide coaxially with the rotor body and movable axially relative to this, and an annular wall connected to the rotor body and forming together with the slide an annular chamber arranged to receive and upon rotation of the rotor retain a liquid for hydraulic influence on the slide. Furthermore, the rotor has an additional slide, which is arranged axially movable relative to the rotor body and the annular wall and which extends axially into and has an axially directed surface in a radially outer part of the annular chamber.
In centrifugal separators of this kind the annular slide generally is used for opening and closing of openings at the circumference of the centrifuge rotor, e.g. openings constituting peripheral outlets from a separation chamber in the rotor. A centrifugal separator of this kind is shown in GB No. 2.172.221, for instance, at which said additional slide is arranged for intermittently opening of a peripheral outlet from the annular chamber during operation of the centrifuge rotor, so that all or a part of the amount of liquid present in the chamber can be discharged.
When liquid is discharged out of the annular chamber, the free liquid surface therein is moved radially outwards, while the axial pressure of the liquid on the slide decreases. As a result of the fact that process liquid present inside the separation chamber acts with a counter directed pressure on the slide, the slide will be moved axially to opening of the outlets of the separation chamber, when the pressure on the slide from the liquid in the annular chamber becomes less than the counter directed pressure from the process liquid. If the annular chamber is emptied completely of liquid, the slide will remain in a position, in which the outlets of the separation chamber are open. The separation chamber will then be emptied completely of its contents. If on the contrary only a part of the liquid in the annular chamber is discharged, the slide at first will be moved such that the outlets of the separation chamber are opened and thereafter be moved back to its closing position by the pressure of the liquid remaining in the annular chamber. Determining for the amount of process liquid leaving the separation chamber will thus be the amount of liquid discharged out of the annular chamber. Upon total as well as partial discharge of the separation chamber new liquid has to be supplied to the annular chamber as replacement for the liquid discharged out through the peripheral outlets.
A problem in centrifugal separators of this kind is to be able to precisely discharge during operation a certain amount of liquid out of the annular chamber, so that the liquid surface in this remains at a desired radial level. Only if so is done, it is possible to determine with a high accuracy the amount of process liquid which is to be discharged out of the separation chamber. In connection to this it should be mentioned that a central inflow of liquid into the annular chamber, which normally is maintained uninterrupted while liquid is leaving the chamber via the peripheral outlets, does not essentially influence on the level at which the liquid surface in the chamber stops at its movement radially outwards. The flow rate of the supply at the center of the rotor is only a fraction or a few per cent of the flow rate of the outflow through the peripheral outlets, meaning that possible disturbances in the supply has far less importance than disturbances in the outflow.
Another problem in centrifugal separators of the known kind is to discharge liquid out of the annular chamber quickly enough. A further problem is that the valve means used for the intermittent opening and closing of the outlets from the annular chamber are worn out during operation and demand regular service to be able to keep the outlets securely closed.
The object of the present invention is to provide a solution of the above mentioned problems.
This is possible according to the invention in
REFERENCES:
patent: 3938734 (1976-02-01), Wilke
patent: 4479788 (1984-10-01), Kohlstette
patent: 4514183 (1985-04-01), Kohlstette
patent: 4643708 (1987-02-01), Stroucken
ALFA-Laval Separation AB
Jenkins Robert W.
LandOfFree
Operating system for centrifugal separator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Operating system for centrifugal separator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Operating system for centrifugal separator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-619072