Electricity: motive power systems – Positional servo systems – Adaptive or optimizing systems including 'bang-bang' servos
Reexamination Certificate
2000-07-17
2002-03-12
Dang, Khanh (Department: 2837)
Electricity: motive power systems
Positional servo systems
Adaptive or optimizing systems including 'bang-bang' servos
C318S566000, C318S569000, C318S687000
Reexamination Certificate
active
06356045
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an operating knob device and electronic equipment including the same.
2. Description of the Related Art
An operating knob device is known as a device for adjusting an amount of sound of electronic equipment such as acoustic equipment or communication equipment. A typical knob device is composed of a variable resistor provided with a rotary shaft and an operating portion such as an operating knob mounted on a rotary shaft. The operating knob is operated to thereby change a resistance value of the variable resistor. Thus, it is possible to change a set value of the variable resistor.
On the other hand, an operating knob device that may cope with the automation is also known. This operating knob device has an electrical motor to the rotary shaft of the variable resistor. In this operating knob device, the set value of the variable resistor may be changed by the operating knob and the electrical motor. Namely, in this operating knob device, the electrical motor is operated as desired, thereby changing the set value of the valuable resistor. Thus, the resistance value of the variable resistor is changed in response to the rotation of the operation knob.
Here, in such an operating knob device, it is important to facilitate the setup of the position of the operating knob. In particular, in some cases, in the operating knob device, it is necessary to return the operating knob back to the original position after the operating knob has been once operated. This operation to return the operating knob back to the original position of the operation knob is referred to as reset.
In order to facilitate this reset, (1) the original position of the variable resistor is stored in a memory within a computer, and when the variable resistor is returned back to the original position, the variable resistor is returned back to the original position by the motor mounted on the variable resistor.
(2) It is considered to provide a structure where a number of light emitting diodes are arranged in the vicinity of the operating knob and a point representative of the original position is lit.
However, in the case using the motor (1), the speed for returning to the original position depends upon an rpm of the motor.
It is impossible to return the variable resistor taking a time slowly or return quickly for a short period of time in accordance with the operator's intention. Also, in a method for indicating the return position by the light emitting diodes, it is necessary for the operator to follow the return position through his eyes. For this reason, if the operator is not accustomed with the operation, it takes a long time to return.
SUMMARY OF THE INVENTION
In order to solve the above-mentioned defects, an object of the present invention is to provide an operating knob device and electronic equipment including the same, which may prevent the follow of the operator's eyes to the reset operation while making it possible to perform the operation in accordance with his intention when the operator resets an object to be operated to a certain set value.
According to the present invention, there is provided an operating knob device having: a position detection portion for detecting a position of a set numerical value of an object to be set; an operating portion for changing and operating the set numerical value; a drive portion for driving the operating portion; and a control portion for controlling the drive portion on the basis of a detection result of the position detection portion. The control portion includes: a first position calculation portion for calculating a first set numerical value that is a current set numerical value of the object to be set, on the basis of the detection result of the position detection portion; a second position calculation portion for calculating one or a plurality of second set numerical values that are set numerical values before change of the object to be set, on the basis of the detection result of the position detection portion; and a drive control portion for controlling the drive portion to be driven and changing and controlling a drive parameter of the drive portion when an absolute value of a difference between the first set numerical value and at least one second set numerical value falls within an allowable range.
According to the present invention, by operating the operating portion, the current first set numerical value approaches the target second set numerical value. Then, when the difference between the first set numerical value and the second set numerical value falls within a certain allowable range, the drive portion is driven so that the operating portion reaches the target second set numerical value in an automatic manner. Thus, it is possible for the operator to move the operating portion to the position of the target second set numerical value without visually observing the target second set numerical value.
It is preferable that the drive control portion changes and controls a torque of the drive portion. Thus, it is possible to change and control the value of the torque as desired and it is possible to slowly return the operating portion back to the original position while taking a time or quickly return it for a short period of time in accordance with the operator's intention, thereby enhancing the operationability.
Also, according to the present invention, it is preferable that the drive control portion is controlled to simulate a mechanical detent. Thus, it is possible for the operator to reset the operating portion back to the original position only in accordance with the finger sense without eye follow of the reset position, thereby enhancing the operationability. Furthermore, it is possible to provide a sense such as a mechanical detent at any desired position.
It is also preferable that the drive control portion is controlled to simulate a mechanical stop. Thus, it is possible for the operator to readily clearly recognize the position where the operating portion should stop when the operating portion is reset only in accordance with the finger sense of the operator.
Also, according to the present invention, it is preferable that the drive control portion is controlled to simulate a mechanical detent in the case where at least one of second set numerical values is selected out of the plurality of second set numerical values, and to simulate a mechanical stop in the case where the other second set numerical value is selected. It is thus possible for the operator to distinguish the plurality of positions to be reset according to, for example, the importance only in accordance with the finger sense in the operation of the operating portion to thereby further enhance the operationability.
Also, according to the present invention, it is preferable that the drive control portion is controlled to change at least one of second set numerical values to any desired value. Thus, since the reset position is set freely, the operator does not have to pay his attention to the setup operation.
Also, it is preferable that the drive control portion is controlled so that the plurality of second set numerical values is present in a variable range. It is thus possible for the operator to distinguish the position within the variable range and the plurality of second set numerical values (plural reset positions) from each other without visual observation and to recognize that by the operation of the operating portion.
Also, according to the present invention, there is provided a detection portion for detecting whether or not an operator contacts with the operating portion. It is preferable that the drive control portion is controlled to drive the drive portion when the detection portion detects the contact condition. Thus, since the drive portion is driven only in the contact condition, it is unnecessary to drive the drive portion in the noncontact condition (i.e., when the operator does not operate the operating portion), and it is possible to aim the reduction of the ene
Newton Scott Michael
Overocker James Richard
Rayna David
Walker Saul Adam
Baker & Botts LLP
Dang Khanh
Otari Inc.
LandOfFree
Operating knob device and electronic equipment including the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Operating knob device and electronic equipment including the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Operating knob device and electronic equipment including the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2828518